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Abstract

In the field of content generation by machine, the state-of-the-art text-to-image model,
DALL⋅E, has advanced and diverse capacities for the combinational image generation with
specific textual prompts. The images generated by DALL⋅E seem to exhibit an appreciable
level of combinational creativity close to that of humans in terms of visualizing a combina-
tional idea. Although there are several common metrics which can be applied to assess the
quality of the images generated by generative models, such as IS, FID, GIQA, and CLIP, it
is unclear whether these metrics are equally applicable to assessing images containing
combinational creativity. In this study, we collected the generated image data from machine
(DALL⋅E) and human designers, respectively. The results of group ranking in the
Consensual Assessment Technique (CAT) and the Turing Test (TT) were used as the bench-
marks to assess the combinational creativity. Considering the metrics’mathematical principles
and different starting points in evaluating image quality, we introduced coincident rate (CR)
and average rank variation (ARV) which are two comparable spaces. An experiment to calcu-
late the consistency of group ranking of each metric by comparing the benchmarks then was
conducted. By comparing the consistency results of CR and ARV on group ranking, we sum-
marized the applicability of the existing evaluation metrics in assessing generative images con-
taining combinational creativity. In the four metrics, GIQA performed the closest consistency
to the CAT and TT. It shows the potential as an automated assessment for images containing
combinational creativity, which can be used to evaluate the images containing combinational
creativity in the relevant task of design and engineering such as conceptual sketch, digital
design image, and prototyping image.

Introduction

Automatic image generation based on textual description has a wide range of applications in
different fields, such as computer-aided design, electronic games, and creative art generation.
To improve the performance of generative models, OpenAI proposes DALL⋅E (Ramesh et al.,
2021) to generate images with lines of natural language textual prompts. In the DALL⋅E
demonstration, text-to-image generation offers extensive and advanced capabilities. One of
the most impressive aspects of DALL⋅E is its ability to combine irrelevant concepts to produce
plausible images. The formation of new objects through real or imaginary things or ideas is
possible due to the combinatory character of language itself. Figure 1 illustrates the example
of an avocado chair formed by combining two concepts (i.e., an armchair and an avocado).
From the perspective of creativity, the way in which DALL⋅E creates images and explores
the structure of language composition through the combination of concepts in various formats
conforms to combinational creativity proposed by previous research (Boden, 2004). While this
impressive AI image generation is challenging in human creative industries (Amato et al.,
2019), there is still no efficient way to assess the creativity of machine-generated content.
The demand for creativity assessments of machine-generated images is increasing.

A number of creativity assessment are employed to evaluate design and engineering-related
products including images, such as Consensual Assessment Technique (CAT), Turing Test
(TT), and Torrance Tests of Creative Thinking (TTCT). CAT requires experts in the relevant
fields as assessors and a minimum number of seven assessors to ensure the reliability of the
assessment (Amabile, 1982). The results of CAT are related to the knowledge and personality
of the experts, which can lead to problems such as evaluation bias and unreliability. In con-
trast, TT is a non-expert evaluation method widely used for machine-generated content.
The recruitment of design students who can participate in the TT is also relatively easier to
achieve than the recruitment of design experts, and the sample size of participants for the
evaluation is relatively larger. Although these traditional assessments can be used to assess
combinational creative images, they are still time-consuming to implement and could
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introduce human bias. Therefore, exploring an automated assess-
ment to assess generative images containing combinational crea-
tivity needs to be considered.

There have been several metrics to evaluate the imaging quality
(e.g., clarity, variety, and the machining degree of text-image or
image-image) in a distributional similarity based or image-image
similarity based way for the different computer vision tasks, such
as Inception Score (IS) (Salimans et al., 2016), Fréchet Inception
Distance (FID) (Heusel et al., 2017), Generated Image Quality
Assessment (GIQA) (Gu et al., 2020), and Contrastive
Language-Image Pre-training (CLIP) (Radford et al., 2021). IS
assesses the clarity and diversity of the images by determining
the probability of the class distribution of the images in the output
layer in the InceptionV3 network. FID calculates the distance
between the two multivariate normal distributions of the gener-
ated and real images at the feature level. Unlike IS and FID
which evaluate the quality of a large batch of generated images,
GIQA is a metric quantitatively evaluating of a single generated
image. CLIP is a pre-trained network to evaluate the similarity
between images or between image and text. However, it is
unknown whether they are applicable for assessing the creativity
embedded in the machine-generated combinational images. It
is, therefore, necessary to determine whether these metrics are
suitable for assessing images arising from combinational
creativity.

To determine the effectiveness of existing automated metrics
including IS, FID, CLIP, and GIQA in assessing the images con-
taining combinational creativity, we firstly collected image data
from DALL⋅E and human designers and allocated them into
eight groups for further assessments. These images were generated
(or designed) according to the eight sets of textual prompts we
provided, where these textual prompts already had the

characteristics of combinational creativity as required by combi-
national creativity theory. We conducted a CAT and a TT for
the eight groups and ranked the eight groups in their combina-
tional creativity. The ranking results of these two assessments
will be used as a benchmark (external validation) for the combi-
national creativity assessment. Four metrics for automated evalu-
ating image quality then were conducted to score the images in
each group and to rank the eight groups.

Although these four metrics are not comparable with each
other due to their different mathematical implications and start-
ing points for assessing image quality, we can compare the results
of their respective score rankings for the eight groups in terms of
their consistency with the results of the benchmark creativity
evaluation rankings. Finally, we summarized the consistency of
the four automated image-generated metrics comparing with
the human creativity assessment and discussed their applicability
and limitation from the perspective of combinational creativity
images. Our finding shows that GIQA has some potential for
assessing the images containing combinational creativity. This
metric can be used as an efficient automated combinational crea-
tivity assessment to evaluate the images containing combinational
creativity in the relevant task of design and engineering such as
image-based conceptual sketch, digital design image, and proto-
typing image.

Our contributions are summarized as below:

1) We conducted the CAT and the TT as the external validations
to assess the quality of machine-generated images containing
combinational creativity. Both expert and non-expert assess-
ments are considered as benchmarks to determine the applic-
ability and reliability of the metrics to be measured under the
different settings of combinational creativity assessment. Note

Fig. 1. The image samples containing combinational
creativity generated by DALL⋅E.
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that the effects of the subjective experience form the assessor
during the experiments should be considered.

2) We proposed an approach for indirectly comparing generative
image metrics with different purposes. We firstly compared
the consistency results between the benchmarks and each
metric separately. The result is based on CR and AVR,
which are two comparable spaces. A comprehensive analysis
of this consistency can identify whether a metric matches
the external validations (i.e., CAT and TT). The metric with
a degree of consistency close to the external validations can
be considered as a potential automated method for assessing
the image containing combinational creativity.

3) A self-build dataset named “base-additive dataset” was con-
structed for reducing the impact of irrelevant image data on
the real distribution during the metrics calculation. It consists
of pairs of combinational elements (i.e., the base and the addi-
tive) in each group to be tested. This helps the metrics to
evaluate combinational creativity features more accurately.

Related work

Generative model

Text-to-image synthesis in computer vision aims to understand
the relationship between vision and language and generates corre-
sponding images according to the input textual prompts. It is an
intricate generative task because machine learning models must
understand the concept attributes, the spatial concepts, and the
relationships between different concepts to produce images
based on the arising understanding. Text-to-image generation
demands that the machine has a deep understanding of what is
being created, both semantically and contextually. Such multimo-
dal generative tasks have great potential for applications such as
image production, video games, and computer-aided design.

In the field of text-to-image generation, Mansimov et al.
(2015) introduced alignDRAW which is a generative model com-
bining VAE with alignment model-generated images that corre-
spond to input text. However, the generative adversarial
network (GAN)-based models have low performance for complex
and domain-general scenes. To address this issue, large-scale gen-
erative models based on autoregressive transformer (Vaswani
et al., 2017) have been proposed. With the introduction of atten-
tion mechanism and huge number of parameters, the quality and
comprehension of generative models has reached an unprece-
dented level. Among the generative models, DALL⋅E, a
state-of-the-art model, is a 12-billion parameters GPT-3 version
(Brown et al., 2020) which trains a discrete variational autoenco-
der (dVAE) compressing image into token and an autoregressive
transformer modeling the joint distribution over text and image
tokens. DALL⋅E receives text and image as a data stream of
1280 tokens, and all tokens are generated using the maximum-
likelihood algorithm during the training period. It can create
anthropomorphic objects, transform the underlying attributes of
objects (i.e., surface material, composition form, internal and
external structure), and achieve the ability of controlling the view-
point of the scene. Furthermore, it can combine unrelated con-
cepts according to textual prompts and generates real or
imaginary objects, which means it not only can be extended to
a variety of industrial design tasks but also has the ability of com-
binational creativity. In addition, two other approaches, CogView
(Ding et al., 2021) and ERNIE-ViLG (Zhang et al., 2021), have
recently been proposed, which claim to deliver similar

combinational creativity abilities and excellent performance sim-
ilar to DALL⋅E but so far lack convincing sample cases.

DALL⋅E can select and combine arbitrary concepts from the
semantic space to create novel images, which seems to demon-
strate the ability of content understanding and creativity like
human intelligence. We have seen the potential of DALL⋅E for
generating creative contents, especially combining two non-
relevant concepts. By exploring the possible combinations and
forms of caption, DALL⋅E can approximate the ability of visual
mental imagery. Compared to other generative models, DALL⋅E
demonstrates more powerful capabilities in image generation
and it can generate unusual visual content which is difficult for
human imagination, as required by the input textual prompts.
Therefore, we chose DALL⋅E as the target generative model to col-
lect the machine-generated images for our assessment experiment.

Combinational creativity

Combinational creativity is the easiest way to generate ideas by
exploring non-relevant combinations of familiar concepts (Han,
2018). The generated ideas can be expressed as the form of visual
content such as texts and images, auditory contents such as
sounds and music, and even abstract conceptions (Ward and
Kolomyts, 2010). Visual content is more intuitive compared
with textual content, which allows the human brain to quickly
process the design ideation (Muller, 1989). Based on this, recent
research of combinational creativity image synthesis (Chen
et al., 2019) has focused on derivative noun-noun combinations,
where a noun is not limited to a single word, such as “stationery”,
but can also be a noun phrase, such as “tea pot”. In the two con-
ceptual nouns, one of them is called “the base” which is the main
or basic concept in a creative combination; another one is called
“the additive” which is an additional concept to form the combi-
nation. For example, in the combinational description of “lamp in
the style of paper carving”, “lamp” is the base and “paper carving”
is the additive.

Inspired by visual mental imagery (Kosslyn et al., 2001),
text-to-image synthesis in the computer vision domain aims to
understand the relationship between vision and language and
generate corresponding image according to the input textual
prompts (Frolov et al., 2021). The images synthesized by
DALL⋅E seems to contain a certain degree of combinational crea-
tivity, as it generates images that match the textual content based
on the prompts with combinational creativity. However, whether
an individual or a system is creative or not needs to be determined
by creativity assessment (Kaufman et al., 2008b). To our knowl-
edge, there is no evidence of evaluation methods specifically
designed for combinational creativity in the field of generative
models. The challenge of discovering an efficient creativity assess-
ment for generative models is deemed worthy of attention. We
will discuss the potential automated metrics for evaluating
image creativity in the section “Turing test”.

Consensual assessment technique

An important issue in creativity research is how to find an appro-
priate method to measure it. Early creativity assessments are
mainly based on divergent thinking test, such as Unusual Usage
Test (UUT) and TTCT (Torrance, 1972), which emphasize con-
ceptual fluency. However, these methods face challenges of pre-
dictiveness and reliability. Amabile believes that a person’s
creativity can be reflected in the inventiveness of their creations,
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while the inventiveness of creations is mainly reflected in the nov-
elty and appropriateness (Amabile and Hennessey, 1999).
Although people may not all define creativity in the same way,
experts in the same field will have a largely shared view of the
same work (i.e., consensus). Based on this, a method of assessing
creativity called CAT has been proposed (Amabile, 1982). This
method is a subjective assessment based on expert consensus. It
has been widely used for creativity in the fields of art (Burnard
and Power, 2013), writing, as well as design (Cropley and
Kaufman, 2013) and engineering (Denson et al., 2015) in relation
to problem-solving. Although the assessment performance of
CAT is widely accepted, effective CAT implementation is often
difficult and expensive to assemble a group of relevant experts.

Turing test

In computational creativity fields, subjective evaluation has been
widely adopted for assessing the creativity of generated outcomes
due to the fuzzy definition of creativity combined with varying
goals of the evaluated generative models (Yang and Lerch,
2020). TT, one of the subjective evaluation methods, is often
used as a non-expert method to assess computational creativity
(Bringsjord et al., 2003; Boden, 2010). The main purpose of TT
is to examine whether a machine has the ability to exhibit intelli-
gent behavior that is comparable to, or indistinguishable from a
human (Turing, 2007). TT and its variation provided a funda-
mental method for assessing computational creativity. For
instance, in the field of text generation, LeakGAN (Guo et al.,
2018) is used to take TT to compare the generated text with the
real text by inviting online subjects, in which the subjects selected
sentences they believed to be real. In the field of music generation,
several studies (Pearce and Wiggins, 2007; Chu et al., 2016; Shin
et al., 2017) utilize TT to assess generative music systems by ask-
ing subjects to identify the pieces considered to be composed by a
human as opposed to a machine, and the purpose of these studies
show how close is the music generated to the real sample.

Metrics for assessing generative images quality

To measure the quality of images produced by the generative
model, a list of metrics adopting the pre-trained neural network
for generative model have been proposed, such as IS (Salimans
et al., 2016) and FID (Heusel et al., 2017). IS and FID can provide
objective criterion in terms of image quality and assist the model
to improve the generation performance, and they both receive the
highest rating of all GAN evaluation methods sorted by Borji
(2019). The IS focuses on evaluating the performance of genera-
tive models with image classifiability and diversity, and the FID
measures the generated image quality by calculating the distance
of data distribution between real images and generated images,
which can detect intra-class mode dropping and to be consistent
with human judgment. Nevertheless, these two approaches are
limited to assess the quality of whole image sets instead of indivi-
dually evaluating each of the images.

To address this issue, GIQA was proposed, which can be con-
ducted with two approaches (i.e., learning-based and data-based).
The learning-based approach trains a convolutional neural net-
work (CNN) to regress the quality scores of each image, and
the data-based approach estimates the quality of each image in
a probability estimation perspective. For the text-to-image synthe-
sis, the alignment degree between generated images and input
texts is also an essential criterion to be measured. Thus, previous

research utilized CLIP which is a neural network learned vision
concept from natural language supervision. By calculating the
cosine similarity of the text and image embedding, CLIP was
capable for measuring the alignment degree and re-rank images
generated by DALL⋅E in each caption.

Although these metrics are valid for assessing the generative
quality of images, it is unclear whether they are still applicable
for assessing the combinational creativity embedded in the gener-
ated images. It is, therefore, necessary to investigate the validity of
each metric for assessing the combinational creativity of images.

The assessment method

Method overview

Inspired by the mechanism of the combinational creativity and
the text-to-image generation, we first extracted key information
from the text with the combinational creativity prompts, includ-
ing the base and additive, where the base is the subject of the
combinational creative information, and the additive is a decora-
tive expression of the subject base. To build the combinational
creativity dataset used for subsequent experiments, we collected
the image data from human designer and machine, where the
machine-generated images were created by DALL⋅E according
to the input textual prompts. These images with their correspond-
ing textual description are distributed to eight groups. Each group
couples of human-created images and machine-generated images.
To our knowledge, existing image datasets are built based on
ontologies composed of common objects in our daily life, and
these datasets are usually used in the evaluation task of generative
models. However, the concepts in the collected bases and addi-
tives are not fully covered in these datasets. Therefore, a new data-
set was constructed from the Internet based on the previously
collected texts of the base and additive. This dataset was named
the base-additive. It can be used in subsequent evaluation tasks.

In this study, to explore the applicability of assessing generative
images containing combinational creativity and to seek an auto-
mated assessment solution, four of the most representative
metrics (i.e., IS, FID, CLIP, and GIQA) which are widely used
for image quality evaluation were selected in the combinational
creativity image assessment experiments. However, these four
metrics assess “image quality” from different principles and start-
ing points. IS estimates the clarity and diversity of the generated
images based on how well the image classifier Inception v3 clas-
sifies the generated images. In contrast, FID captures the similar-
ity between the generated images and the real image set. Both are
metrics based on data distribution. CLIP is originally used for the
task of reordering the images generated by DALL⋅E. It can assess
how well individual images match a given description text or
image. GIQA defines “quality” as the similarity of a generated
image to the distribution of the ground-truth dataset, which has
the ability to score the single generated image in a way that pre-
vious methods of generative model metrics lack. It can be seen
that these four metrics cannot be directly compared with each
other due to their different calculation methods and ranges of
results. To address this challenge, we used the ranking results of
eight groups in creativity assessments based on human evaluation
as benchmarks, and indirectly evaluated the performance of the
four metrics by comparing the results of them with those of the
benchmarks, respectively.

We choose CAT and TT as two benchmarks for evaluating the
quality and creativity of generated images. CAT can be used as a
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valid expert assessment method to evaluate the creative quality of
images in the eight groups. In the CAT for this study, 19 experts
with 20 years’ experience in design were asked to assess the nov-
elty, feasibility, and combinational completeness of the images. In
addition, a non-expert-based TT was conducted. Ninety-seven
non-expert subjects were asked to determine whether an image
matched the corresponding combinational textual description
and is machine or human to generate the image. Chosen both
expert and non-expert assessments is to ensure a valid external
validation. This validation will be used to analyze the feasibility
of the four metrics for the combinational creativity assessment.
The group ranking of the CAT and TT were used to calculate
the consistency with the group ranking of each metric. The effec-
tiveness of assessing images containing combinational creativity
can be determined by comparing the coincident rate (CR) and
the average rank variation (ARV) of each metric with the results
of the TT and CAT. The process of our study is shown in Figure 2.

Machine and human datasets

To compare the ability of graphical design and creative concepts
combination for human and machine, we respectively collected
human-designed and machine-generated images. For this pur-
pose, we provided eight groups of textual prompts containing
combinational creativity. These textual prompts contained
descriptions of product design as well as of conceptual fragments
from earlier stages of divergent thinking, such as combining dif-
ferent materials, synthesizing the appearance of objects, and gen-
erating imaginary animals. Table 1 shows the textual prompt as
well as base and additive corresponding to all eight classes of
images. Human and machine were both required to sketch and
design corresponding visual images based on these prompts con-
taining combinational creativity.

To build the machine image set, DALL⋅E generated 32 images
for each group of textual prompts. However, we found that
machine and human may have different insights on “what a
good image is” by observing these images. From the machine’s

point of view, the 32 images were carefully selected by machine
itself. Nevertheless, some of images were obviously inferior to
the human-designed images from human being’s perspective, or
the generated contents did not match with text descriptions.
Therefore, to reasonably select the generated images with better
quality, we conducted an image selection based on the CAT
approach. Three designers with design experience of at least 5
years were asked as the assessors to select the best five images
in each group. The assessment process required the assessor to
select the image that best matches the content of the correspond-
ing textual description. Specifically, a high-quality image means
that it should show the main features of the base, while also
reflecting the decorative features of the additive. The main feature
indicates that the image shows the main function of the base and
the decorative feature can be the texture, color, or style of the
additive. The final selection results of each group are shown in
Table 2.

To build a human-designed image set, we invited seven
designers who had received undergraduate education in design
for 4 years. Each designer was required to design eight different
images for each group according to the textual descriptions.
The designers were required to complete each image class within
1 h. They were allowed to search the information of each individ-
ual concept in a combination (i.e., base or additive) on the
Internet. They were restricted to search the relevant images con-
taining combined concepts to avoid any impact from existing
combinational design solutions. In addition, the graphical design
was required without descriptive texts, and the background
should be white or as clean as possible. These image contents
should conform to the corresponding text description as much
as possible and the individual concepts that composed the combi-
national images should be recognizable by human intuitive obser-
vation. We also selected the best five images from each group with
the same process of machine images selection. The selected
human-designed images with the selected machine-generated
images together constituted as the test data in the subsequent
assessments, as shown in Table 2.

Fig. 2. The process of evaluating metrics for creative images.
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Base–additive dataset

The calculation of the four metrics is influenced by the distribu-
tion of the dataset. However, the existing image sets do not fully
cover the base and the additive concepts related to our

combinational image creativity experiment. For this reason, we
collected 400 images from existing datasets and the Internet by
respectively searching the corresponding the base and the additive
keywords in Table 3. The collected images were required to be

Table 1. Groups of prompt related to combinational creativity and corresponding base and additive

Group Text Prompt Base Additive

1 A pentagonal green clock. A green clock in the shape of a pentagon. Clock Pentagon

2 A capybara made of voxels sitting in the field. Capybara Voxels

3 A stained glass window with an image of a blue strawberry. Stained glass window Strawberry

4 A snail made of harp. A shell with the texture of a harp. Snail Harp

5 An armchair in the shape of an avocado. An armchair imitating an avocado. Armchair Avocado

6 A giraffe imitating a turtle. A giraffe made of turtle. Giraffe Turtle

7 A cube made of porcupine. A cube with the texture of a porcupine. Cube Porcupine

8 A professional high-quality emoji of a lovestruck cup of boba. Cup of boba Lovestruck emoji

Table 2. Selected DALL⋅E generated image and human-designed image

Text prompt Machine image sample Human image sample

A pentagonal green clock. A green clock in the shape of a pentagon

A capybara made of voxels sitting in the field

A stained glass window with an image of a blue strawberry

A snail made of harp. A shell with the texture of a harp

An armchair in the shape of an avocado. An armchair imitating an avocado

A giraffe imitating a turtle. A giraffe made of turtle

A cube made of porcupine. A cube with the texture of a porcupine

A professional high-quality emoji of a lovestruck cup of boba
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clear and complete and to keep the diversity of images with dif-
ferent characteristics. They were then constructed as a small data-
set called the base–additive dataset. As illustrated in Figure 3, the

dataset was divided into five sets. Each set contains eight groups
of combinational classes. Each group of classes includes five base
images and five additive images. The selected image samples in

Table 3. A demonstration of base and additive

Group Base Corresponding image Additive Corresponding image

G1 Clock
Pentagon

G2 Capybara Voxels

G3 Stained glass window Strawberry

G4 Snail Harp

G5 Armchair Avocado

G6 Giraffe Turtle

G7 Cube Porcupine

G8 Cup of boba Lovestruck emoji

Fig. 3. The construction process of the base–additive dataset.
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the dataset are shown in Table 3. This dataset will be used in the
calculation of FID and CLIP.

In addition, most images in the same category appear to be the
same in the current dataset and the Internet. Although we
removed duplicates and approximate images and kept as many
images with large differences as possible for each category, we
finally collected only 400 images. GIQA thus used MS-COCO
(Lin et al., 2014) which is most commonly used in computer
vision as the real dataset.

Evaluation experiment

Consensual assessment technique

We organized a CAT experiment to evaluate the creativity scores
of human and machine images for each group. Nineteen experts
who all had 15–20 years of experience in creative design-related
fields were recruited. We randomly mixed the machine and
human images in each group before assessment and hid the cor-
responding producer labels. The raters knew each image and its
corresponding combined text description but did not know who
had generated the image. They also were asked to rate each
image on three dimensions: novelty, feasibility, and combinational
completeness. The scoring method is based on a five-point Likert
scale. All raters rate a random image on a score of 1–5 after get-
ting an overall understanding of all the images to be assessed, as
shown in Figure 4. In order to ensure the reliability of the CAT
results, the raters were in an experimental environment where
there was no other suggestive information. They were not allowed
to use any equipment or tools to assess the images. The whole
assessment process was based entirely on the raters’ own experi-
ential understanding and implicit reflection on the combinational
creativity. Each rater was limited to 30 min to complete the assess-
ment. After the experiment was completed, the ranking results
and reliability of the CAT were calculated separately.

Turing test

We adopted the TT to examine to what extent the images gener-
ated by DALL⋅E can “fool” the human subjects by combining
prompts in terms of the combinational creativity. The ranking
result among the different groups was used as the benchmark

to identify the effectiveness of the four metrics for the generative
model on the combinational creativity. Our task settings were
split into eight classes of groups, and each group contained five
human-designed and five machine-generated images. In our TT
setting, the images in each group were randomly ordered and
each image was shown along with the text descripting the
image contents. Ninety-seven participants, who had not viewed
the test images before, successfully took part in the experiment.
The number of those who had received drawing training was
divided into three intervals: less than 1 year, 1–3 years, and
more than 3 years, with the numbers representing 58%, 19%,
and 23% of the overall population, respectively. The test starts
with eight groups of questions where each group contains 10
images, and each image pairs with the corresponding text descrip-
tion. The invited subjects were asked to choose one option that
the image produced by either human or machine, as shown in
Figure 5. However, there are some effects that may interfere
with the accuracy of the results during the experiment, such as
aligning the UI to be uniform across different devices, requiring
no less than three seconds to answer each question, and prevent-
ing answering multiple times through phone number verification
from the same person. In addition to ensuring the independence
and objectivity of the process, we did not provide any response to
the subjects during the test. At the end of the test, the subjects can
choose to leave the feedback which describes the reason of judging
whether an image is human-designed or machine-generated, or
the difficulties they encountered during the testing process.
Their feedback was collected and then used in the subsequent
analysis of the combinational creativity.

Metrics for generative models

In this section, we selected four metrics to calculate the quality of
the generated images, which include IS, FID, GIQA, and CLIP. In
our evaluation experiment, each metric feeds in the images from
human and machine of eight groups respectively to obtain the
corresponding calculation results.

Fig. 4. A user interface example of our CAT. Fig. 5. A webpage example of our TT.
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1) Inception Score (IS)

The IS experiment was divided into two parts. In the first part,
we calculated the overall IS from Group 1 (G1) to Group 8 (G8) of
the machine images and the human images separately. To objec-
tively evaluate the scores, we also calculated the IS of the five
groups of base–additive datasets as experimental controls. In
the second part, IS was calculated separately for each of the
eight groups in the machine and human datasets. The equation
for IS is as follows:

IS(G) = exp (Ex�pgDKL( p(y | x) ‖ p(y))) , (1)

where x is an image sampled from pg. DKL( p, q) calculates the
KL divergence between p and q, where p( y|x) is the conditional
class distribution and p( y) is the marginal class distribution. The
IS mainly considers two criteria of evaluating the performance of
the generative model. The first criterion is that the generated
image should possess a clear classifiable object. If the probability
of an image belonging to a certain class is very high and to other
classes is low, p( y|x) will be considered as low entropy. The sec-
ond one is the diversity of label classes of generated images. If the
generative model generates images with enough classes, p( y) will
be considered as large entropy. When the generated images have
been satisfied with the two conditions above, the KL divergence
between p( y|x) and p( y) is larger, which allows the generative
model to have a higher IS with better generation performance,
and vice versa.

2) Fréchet Inception Distance (FID)

The FID experiment was also divided into two parts. In the
first part, we calculated the FID performance of machine images
and human images both on the MS-COCO dataset and on the five
groups of base–additive dataset. In the second part, the eight
groups of machine images and human images were subjected to
FID calculation with the corresponding base images and additive
images of the five groups of base–additive datasets, respectively.
The equation is as shown in Eq. (2). By extracting the activation
vectors exported by the real image r and the generated image g
in the last pooling layer and calculating their mean (μr, μg) and
covariance matrix (Σr, Σg), respectively, to summarize as a con-
tinuous multivariate Gaussian distribution, the Fréchet distance is
used to calculate the distance between two Gaussian distributions,
as shown in the following equation. If the FID is lower, it means
that the generated image will be closer to the real image (Heusel
et al., 2017).

FID(r, g) = ‖mr − mg‖22 + Tr Sr + Sg − 2
��������
(SrSg)

√( )
. (2)

3) Generated Image Quality Assessment (GIQA)

Due to the lack of evaluation results from real data, we pre-
ferred to use the proposed hyperparameters M = 70 and K =
3500 in Gu et al. (2020), for the calculation. In addition, to ensure
the accuracy of the results, the dataset size of GIQA needs to be
greater than 5000 images. Therefore, the MS-COCO dataset was
chosen as the real dataset. By modeling the probability distribu-
tion of the real data, the corresponding probability calculates
for each generated image to score the quality. As stated by the

authors, GIQA is divided into the two methods: the parametric
Gaussian Mixture Model (GMM) based and the non-parametric
K-nearest neighbors (KNN) based (Gu et al., 2020). Since both
methods have their own advantages, such as the GMM-based
method is easy to use and the KNN-based method has no training
phase, and there is no evidence to prove which method is more
appropriate for assessing creativity, we chose to introduce both
methods to our experiment. In the calculation of GMM-GIQA
and KNN-GIQA, the scores of all machine images and human
images were calculated at once, respectively.

The GMM-GIQA adopts the GMM which is the weighted sum
of Gaussian densities of M component for real data capture. We
denoted the mean vector of the Gaussian density of the ith com-
ponent as μi and covariance matrix as Σi. The probability of
image I was calculated as follows:

p(x | l; ) =
∑M
i=1

wig(x | mi,S
i), (3)

where x is the feature extracted from image I , let the feature
extraction function to be f(*) , then x = f (I ). wi is the mixture
weight coefficient satisfying

∑M
i=1 w

i = 1 and g(x | mi,Si) is the
component of Gaussian densities. In addition, all relevant param-
eters of the GMM are represented as l = {wi, mi, Si}.

The authors of the KNN-GIQA suggested that calculating
Euclidean distance of features between the generated image and
the nearby real image in the feature space can express the prob-
ability of the generated image. Let the feature of generated
image as x and the feature of real image near the kth in the feature
space as xk, then the probability of the corresponding generated
image can be expressed as:

p(x) = 1
K

∑K

k=1

1
‖ x − xk ‖2 . (4)

4) Contrastive Language-Image Pre-training (CLIP)

The experiment was composed of three parts. In the first
part, we calculated the cosine similarity by inputting each of
the eight groups of machine images and human images with
corresponding textual prompts into CLIP. In the second part,
to evaluate the ability of computing the base and additive repre-
sentations of the combined creative images of CLIP, we respec-
tively input machine and human images with their
corresponding base and additive text into CLIP to compute
the cosine similarity. In the third part, considering that CLIP
maps input texts and images into its multimodal embedding
space, we aimed to test the performance of the method of com-
puting the distance between images in the CLIP embedding
space. Based on this, we chose to use the base–additive dataset
as a contrast to calculate the cosine similarity between the
machine images as well as the human images and all the base
images as well as the additive images.

Evaluation result analysis

Subjects were not asked to provide any private information during
the whole test. Their data were collected with the consent of the
subjects and used only in this study. The results of CAT, TT,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S0890060423000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060423000069


and four metrics for generative models are presented in the fol-
lowing subsections.

Result of CAT

We first calculated the reliability of the CAT. In this experiment,
we used Cronbach’s α to represent the reliability coefficient, where
the items chosen were novelty, feasibility, and combinational
completeness, and the descriptives were item and scale. After
the calculation in SPSS, the result of Cronbach’s α is 0.698. To
reduce the bias affected by variable factors in the CAT, we there-
fore assigned the same weights of 1:1:1 to three attributes (i.e.,
novelty, feasibility, and combinational completeness), respectively.
We then separately calculated the average of these attributes for
human and machine images in each group. The CAT scores of
human and machine for each group were obtained by Eq. (5),
where N for novelty, F for feasibility, and C for combinational
completeness, and Wx for the weight of each attribute.

SCAT = NWn + FWf + CWc. (5)

In addition, we calculated the percentage difference (PD)
between machine and human images in each group and each
group was ranked according to the PD from largest to smallest.
The results are shown in Table 4. It should be noted that the
bold values in this table (as well as other tables applicable) indi-
cate the higher one of scores. The qualitative results between
humans and machines and the ranking results among the eight
groups will be used in a subsequent consistency analysis between
the CAT and each metrics.

Result of TT

After the TT was completed, we tallied the accuracy of human-
designed images versus machine-generated images for each
group. Each group reflects the rate where subjects successfully
identify images as human or machine. The results are shown in
Table 5.

We calculated the proportion of each image considered as
human-designed, similar to the way of calculating the quantitative
scores of each text based on the TT in LeakGAN. The higher per-
centage means the more creative of the combinational images.

Therefore, we named this proportion as “human-like score
(HLS)”. For the human-designed images, the human-like score
represented the accuracy of the TT. For the machine-generated
images, the score was calculated by “1 – the accuracy of the TT”.
However, we found that the calculated human-like scores did
not fully reflects the real situation in the aspects of human per-
ception. For example, when a human-designed image has
obvious hand-drawn traces, it directly has been judged as a
human-designed image by most subjects without considering
other factors. This might result that a human-designed image
still receives a high rate from subjects even if this image is
with poor creativity and lacking design logic. To increase the
reliability of the human-like score, we removed two hand-drawn
images from 40 human-designed images in the G1 and G3. The
accuracy of the G1 drops to 0.405 and the G3 drops to 0.632.
Averaging the human-like scores of all groups, the human
score was 0.5076 and the machine score was 0.4214, where the
human score was 20.47% higher than the machine. We also cal-
culated and ranked the PD of human-like scores between the
human and the machine for each group, the equation is
shown as follows, where the HLSh and HLSm represent the
human-like score of human and that of machine, respectively.
The qualitative results between humans and machines and the
ranking results among the eight groups will be used in a subse-
quent consistency analysis between the TT and each metrics
(Table 6).

PD = HLSh −HLSm
HLSm

× 100%. (6)

Result of IS

In the IS experiment, the machine scored 8.17 and human scored
7.08, where the machine is better than the human by 13.34%,
which had contradicted with the results of the TT. To compare
the computation results, we calculated IS for each set in the
base–additive datasets. The mean value of the five sets was
13.32 (σ = 1.05). The calculation results are shown in Figure 6.

To explore the IS in each group in depth, we calculated the IS
for the human and machine images of each group in eight groups.
The results are presented in Table 7. Since each group included
less images (only five images) which leads to the lack of the

Table 4. The score and ranking results in CAT

G1 G2 G3 G4 G5 G6 G7 G8

Human 3.46 3.11 3.59 3.26 3.32 2.94 3.14 3.25

Machine 3.29 2.71 2.99 3.44 3.49 2.61 2.46 3.41

Percentage difference (PD) 4.52% 14.81% 20.40% −4.90% −3.46% 12.69% 29.67% −4.93%

Rank 5 3 2 7 6 4 1 8

Table 5. The accuracy of successful identification in TT

G1 G2 G3 G4 G5 G6 G7 G8

Human 59.8% 46.2% 68.0% 62.7% 54.2% 48.9% 49.2% 41.2%

Machine 61.9% 64.1% 55.7% 57.9% 54.2% 53.4% 73.0% 42.7%
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feature diversity, the IS score in each group is lower than the over-
all score. By observing the gap between the score of human and
machine in each group, we found that the G6 is a unique group
in which the human score is better than machine and the results
of G8 was close to the same group in the TT.

Result of FID

The experimental results of FID are shown in Figure 5. The score
of the human images were 4.57% lower than the machine images.
Similarly, the FID was calculated on the five base–additive data-
sets and the results are shown in Figure 7, where the mean of
the five images were 227.0 (σ = 1.49) for human and 288.2 (σ =
3.97) for machine, and the FID of human images were 21.24%
lower than the machine images. In addition, the mean of the
base–additive dataset was 28.03% lower for the human images
and 12.82% lower for the machine images than that of the
MS-COCO dataset. Such results indicated that the dataset con-
structed by bases and additives was somewhat closer to the
human and machine designed images than the MS-COCO data-
set. The base–additive dataset better reflected the distance
between the tested images and collected base and additive images
was more suitable as a dataset for combinational creativity.

To further calculate the distance between the base and additive
concepts, we split the datasets into eight classes and calculated
their FIDs, which are shown in Table 8. The mean of the base

of eight groups were 341.1 (σ = 82.02) for the human and 366.4
(σ = 91.64) for the machine, and the mean of the human was
6.90% lower than that of the machine. The mean of the additive
of eight groups for the human was 358.4 (σ = 113.20), while that
for the machine was 449.6 (σ = 97.14), where the FID of the
human was 20.29% lower than that of the machine.

To understand the degree of authenticity of the base and addi-
tive concepts presented in individual images containing combina-
tional creativity, we averaged two sets of FIDs with equal weights.
The results showed that the mean of FID was 349.8 (σ = 82.71) for
human and 408.0 (σ = 79.72) for machine, where the human score
was 14.27% lower than the machine.

Result of GIQA

GMM-GIQA
The calculation results are shown in Table 9, where the
GMM-GIQA score had a wide threshold ([−10^7, 10^5]). By
comparing the GMM-GIQA score of all images of human and
machine, we can calculate the rankings of each image.
Therefore, instead of comparing the average scores of each
group and the difference between human and machine, we aver-
aged the GMM-GIQA scores of each group and then ranked the
scores of all groups. We also introduced the mixed mean FID of
base and additive and compared the rankings with the
GMM-GIQA results. A comparison between the GMM-GIQA

Fig. 6. IS result comparison.

Table 7. IS of each group of human and machine

Data Origin G1 G2 G3 G4 G5 G6 G7 G8

IS Human 1.63 2.96 2.41 1.78 1.74 2.30 2.21 1.97

Machine 1.99 3.79 2.50 2.17 2.14 2.06 2.48 2.79

Table 6. Human-like score after dropping images

G1 G2 G3 G4 G5 G6 G7 G8 Mean

Human 0.4050 0.4620 0.6320 0.6270 0.5420 0.4890 0.4920 0.4120 0.5076

Machine 0.3810 0.3590 0.4430 0.4210 0.4580 0.4660 0.2700 0.5730 0.4214

Percentage difference 6.30% 28.69% 42.66% 48.93% 18.34% 4.94% 82.22% −28.10% 20.47%

Rank 6 4 3 2 5 7 1 8 –
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and the FID showed that 13/16 of the groups had no more than
two place changes in the ranking and 6/16 of the groups had
unchanged ranking. In all groups, the G4 had the larger variance
and received a lower average ranking in the FID experiment. The
final rankings of the two methods were not quite distinguishing
because both the GMM-GIQA and the FID might be based on
the calculation with the output in the last pooling layer of
Inception V3.

KNN-GIQA
The results are shown in Table 10, where a higher score
obtained for an image means that it is closer to the real image
dataset. We used the analysis same as the GMM-GIQA. The
ranking results showed that the human images received higher
scores than the machines in the G2–G7, which accounts for
75% of the total groups. The overall average ranking of the
human is 6.88 and that of the machine is 10.13. By comparing

Fig. 7. Human and machine FID result on the MS-COCO and base–additive datasets.

Table 8. Base and additive FID result comparison

Data origin G1 G2 G3 G4 G5 G6 G7 G8

Base Human 204.8 392.9 473.0 300.2 310.0 294.6 400.1 353.1

Machine 182.4 429.7 458.2 338.9 344.7 413.5 447.3 316.3

Additive Human 344.8 488.6 536.2 297.9 258.7 374.5 194.4 372.3

Machine 342.8 513.2 547.7 611.8 376.8 441.6 376.1 387.1

Average Human 274.8 440.8 504.6 299.1 284.3 334.6 297.3 362.7

Machine 262.6 471.4 502.9 475.3 360.8 427.6 411.7 351.7

Table 9. GMM-GIQA result and rank comparison

Data
origin G1 G2 G3 G4 G5 G6 G7 G8

Score Human −47282697 −73437152 −78109846 −56939552 −47338196 −61364081 −56221038 −67015242

Machine −48301819 −75876400 −87051568 −58180398 −69824655 −87045772 −68542980 −62377735

Rank Human 1 12 14 5 2 7 4 9

Machine 3 13 16 6 11 15 10 8

FID rank Human 2 12 16 5 3 6 4 9

Machine 1 13 15 14 8 11 10 7

Rank
variation

Human +1 0 +2 0 +1 −1 0 0

Machine −2 0 −1 +8 −3 −4 0 −1
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with the FID ranking results, 56.3% of the groups changed
within two places, and 18.3% of the groups unchanged.
However, some of them, such as G3 and G4, had a significant
difference. Also, the results of KNN-GIQA were significantly
different when compared to GMM-GIQA.

Result of CLIP

CLIP: text-image
The measured cosine similarity of each group is shown in
Table 12. Surprisingly, in the textual prompts provided by
DALL⋅E, the mean cosine similarity was 0.323 (σ = 0.028) for
the human images and 0.340 (σ = 0.017) for the machine images,
where the human score is 5.0% lower than machine. However, in
the base, the mean was 0.269 (σ = 0.021) for the human images
and 0.265 (σ = 0.014) for the machine images, where the human
score is 1.5% lower than machine; in the additive, the mean was
0.257 (σ = 0.037) for the human images and 0.254 (σ = 0.021)
for the machine images, where the human score is 1.2% lower
than machine. The results are shown in Figure 8.

The results indicated that the human-bdesigned images were
closer than the machine images in matching the base and additive
text features, but the image features of machine were closer than
the human-designed in original prompt. We further found that
there were 87.5% of image groups that machine images were clo-
ser to the text features than humans for the original prompt text.
There were five eighths of groups in the base and four eighths of
groups in the additive in which human images were closer to the
machine images.

For this reason, in the process of pre-training, the CLIP pre-
dicted which text segment to be paired with the corresponding
images instead of the previous approach which predicted the spe-
cific text corresponding to each image in a paragraph of text.
Although the trained CLIP model showed a good performance
in text matching task with a single subject, the text content of
the descriptions corresponding to the images containing combi-
national creativity might be more complicated or the text combi-
nation form and descriptions were different from the training.
This problem would lead to difficulties in the CLIP assessment
for the images containing combinational creativity.

In this regard, instead of calculating the cosine similarity of
original textual prompt, we only calculate the cosine similarity
of the base and additive and average them to get a single new
score, the result is shown in Table 11. The average result seems
to possess higher CR with the TT since only the G8 showed
that machine images were better than human images in the TT.
Therefore, this new method would be more appropriate to evalu-
ate the alignment between text and image when used CLIP for the
assessment of images containing combinational creativity.

CLIP: image-image
The mean of each group and the overall mean are presented in
Figure 9 and Table 12. Compared with the base image, the
mean cosine similarity was 0.645 (σ = 0.048) for the human
groups and 0.655 (σ = 0.034) for the machine groups;
Compared to the additive images, the mean was 0.661 (σ =
0.058) for the human groups and 0.633 (σ = 0.048) for the
machine groups. By averaging the two groups, the results showed
that the human score is 1.2% higher than machine, where the
overall cosine similarities were 0.653 for the humans and 0.644
for the machines. In addition, the cosine similarity of image-
image was nearly twice higher than that of text-image, which
means that using real images as references better reflected the
quality of the images to be tested. Thus, we believed that the fea-
ture difference of CLIP model measured between image-image
can also be used to rank the quality of the images containing com-
binational creativity.

Metrics ranking

To identify the consistency of the metrics with the CAT and TT in
terms of the qualitative analysis, we compared the similarity of the
qualitative results on the human–machine comparisons in the
same group with the result of metrics and the human-like

Table 10. KNN-GIQA result and rank comparison

Data origin G1 G2 G3 G4 G5 G6 G7 G8

Score Human 5.8865 5.4260 5.5910 5.9426 5.9428 5.5097 6.0799 5.4696

Machine 6.0635 5.3024 5.2907 5.6790 5.4602 5.0073 5.5142 5.6308

Rank Human 5 13 8 4 3 10 1 11

Machine 2 14 15 6 12 16 9 7

FID rank Human 2 12 16 5 3 6 4 9

Machine 1 13 15 14 8 11 10 7

Rank variation Human −3 −1 8 1 0 −4 3 −2

Machine −1 −1 0 8 −4 −5 1 0

Fig. 8. Average text-image cosine similarity of human and machine.
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score. For example, the result of the GMM-GIQA showed that the
human images were better than the machine images in the G1–G7
but the G8 with the opposite result, which was concluded that the
CR was 75% by comparing with the CAT and 100% by comparing
with the TT. In addition, we also calculated the CR between CAT
and TT, which shows 75% consistency. The complete results of
CR and rankings are presented in Table 13.

The CR can reflect the qualitative consistency of human and
machine image scores in each group between a metric and the
benchmarks. However, the degree to which human and machine
images are evaluated as good or bad in each group and the overall
ranking similarity were still unknown. We calculated the varia-
tions of original ranking from the G1 to G8 of all metrics by com-
paring with the CAT and TT. By averaging these variations in
each metric, we obtained the quantitative results for all metrics
and calculated these results based on Spearman’s Footrule as
the ARV, where n is the total number of groups, GTi represents

the ith group of CAT or TT, and GXi represents the ith group
of an evaluation method:

ARV = 1
n

∑i=n

i=1

|GTi − GXi| . (7)

If the ARV of a metric is lower, it means that the overall con-
sistency of that metric is closer to the CAT or TT. The ranking of
the ARV is shown in Table 14.

Discussion

Machine and human images are generated based on the corre-
sponding combinational creative textual prompts by generative
model and human designers, respectively. Due to the excellent
diversity generation capabilities of DALL⋅E who can generate
images with different styles and appearances, a small number of
samples may lead to biases in the subsequent assessment
(Ramesh et al., 2021). We, therefore, generated 32 iterations for
each set of texts. The human-designed images are also based on
the human brain’s understanding of the combination of textual
content. The design of combinational image by a single individual
is unable to reflect the overall level of human design (Sternberg
and Kaufman, 2018). Seven designers with the same design expe-
rience were therefore asked to participate in the human image
data collection to reduce the bias. The selection process of the
machine and human dataset is implemented based on the CAT,
which can reduce the bias in choosing certain types of images
from each group. However, the combinational quality of the
selected images may therefore be affected by human designer
bias (Kaufman et al., 2008a). A further study could mix the
machine and human test images before the selection but needs

Table 11. CLIP’s text-image cosine similarity comparison of human and machine

Data origin G1 G2 G3 G4 G5 G6 G7 G8

Original prompt Human 0.329 0.288 0.289 0.320 0.324 0.332 0.328 0.377

Machine 0.335 0.334 0.339 0.332 0.340 0.325 0.332 0.379

Base prompt Human 0.289 0.257 0.288 0.253 0.256 0.287 0.235 0.287

Machine 0.275 0.265 0.286 0.262 0.255 0.261 0.242 0.275

Additive prompt Human 0.250 0.257 0.181 0.241 0.287 0.263 0.302 0.275

Machine 0.253 0.278 0.214 0.221 0.261 0.264 0.274 0.259

Average Human 0.270 0.257 0.235 0.247 0.272 0.275 0.269 0.281

Machine 0.264 0.272 0.250 0.242 0.258 0.263 0.258 0.267

Table 12. CLIP’s image-image cosine similarity of human and machine

Data origin G1 G2 G3 G4 G5 G6 G7 G8

Base Human 0.662 0.586 0.674 0.621 0.601 0.739 0.640 0.639

Machine 0.687 0.603 0.638 0.606 0.685 0.672 0.678 0.669

Additive Human 0.712 0.614 0.555 0.669 0.739 0.667 0.644 0.688

Machine 0.633 0.635 0.555 0.655 0.643 0.700 0.572 0.667

Average Human 0.687 0.600 0.614 0.645 0.670 0.703 0.642 0.664

Machine 0.660 0.619 0.597 0.630 0.664 0.686 0.625 0.668

Fig. 9. Average image-image cosine similarity of human and machine.
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to consider how to keep the number of selected human images
and machine images to be equally proportional.

Combinational creativity product seeks to show both features
of the base and the additive on a single frame. As the combina-
tional creativity images of each group do not exist in the reality,
it is unrealistic to collect these kinds of images as the comparison
dataset for the task of evaluation. We, therefore, built the base–
additive dataset to enable the image evaluation metrics to cor-
rectly capture both the base and additive information. While
this self-built dataset improved the accuracy and reliability of
both combinational features in our experiment, it cannot be
used in GIQA due to its small size (Gu et al., 2020). Although
the MS-COCO set contains 80 classes natural images as well as
common images from life and is widely used for various compu-
ter vision tasks, it does not cover all the base or additive concepts
relevant to the experiment (Kim, 2019). This may lead to an
evaluation bias in the GIQA metric test. In our experiments, we
calculated the image score corresponding to the base and the
additive separately and then averaged them. Although this
approach meets part of the requirements for combinational crea-
tivity assessment (Han, 2018), we do not consider the difference
in the proportion of features between the base and the additive.
In contrast, combinational creativity theory indicates that the
combinational concept should reflect a combined form with the
base as a primary idea and the additive as an additional idea.
Further research should be done to construct the large base–addi-
tive dataset to cover the GIQA test and to investigate the impacts
of the base–additive dataset in computational proportion and
fusion algorithms.

In the CAT experiment, we primarily explored combinatorial
creativity and therefore specified three assessable attributes: nov-
elty, feasibility and combinatorial completeness. To reduce the
bias affected by variable factors in the CAT, we preferred to
give same weight to each attribute. However, the setting of the
weights may affect the scores of creativity assessment (Sarkar
and Chakrabarti, 2011). The effect of different weights on the
assessment of combinational creativity in CAT can be considered

in the future study. The Cronbach’s α of the CAT experiment is
0.698, which very close to 0.7. The score been very close or
more than 0.7 can be an acceptable level of reliability (Bujang
et al., 2018). Our experiment thus can be considered reliable in
general. The reliability and validity of the CAT may be affected
by the number of assessors and the assessment bias of individual
experts (Kaufman et al., 2010). Future research can increase the
number of assessors and tailor more rigorous selection criteria
of the experts. Although the TT is based on non-experts, the
results of the TT are related to the knowledge of the participants.
Participants’ perceptions and biases may affect the accuracy of the
TT (Adams et al., 2016). Since the knowledge required in our
designed test is basic, and rigorous instructions were given in
our test, the bias involved in the test is minimized. We chose
both CAT and TT as benchmarks and compared their consis-
tency. This allowed us to verify whether the metrics to be mea-
sured are still applicable and replicable under different creativity
assessment settings. The results show that their CR is 75% and
ARV is 1.5, which is the highest consistency of all the results.
This means that subsequent comparisons of the replicability of
the same metrics in different contexts are reliable. In this paper,
only the CAT and TT settings are valid. However, it is unclear
how other creativity assessment scales such as the TTCT
(Torrance, 1972) and the “How Do You Think” (HDYT) test
(Davis, 1975) impact in the metrics’ consistency. Future research
can replace different settings to verify the applicability of the
metrics.

IS, FID, GIQA, and CLIP are the metrics that determine the
performance of generative models by assessing image quality,
which are widely used in the field of computer vision (Ravuri
and Vinyals, 2019; Gu et al., 2020; Ramesh et al., 2022).
However, all four metrics have different starting points and math-
ematical rationales for assessing image quality. It is not reasonable
to compare their scoring results directly. To address this chal-
lenge, we constructed two consistency ranking spaces, namely
CR and ARV. CR compared the consistency between each metric
and the benchmarks on the overall qualitative results of G1 to G8.

Table 13. The ranking of coincident rate with CAT and TT

CAT Turing Test

Evaluation metrics
Coincident
rate (CR) Ranking

Coincident
rate (CR) Ranking

IS 50% 4
25.0%

6

FID 50% 4
75.0%

4

GMM-GIQA 75% 1
100.0%

1

KNN-GIQA 62.5% 2
87.5%

2

CLIP: DALL⋅E’s text-image 50% 4
25.0%

6

CLIP: base–additive’s text-image 37.5% 7
62.5%

5

CLIP: image-image 62.5% 2
87.5%

2

The CR of CAT with TT 75%
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Table 14. The ranking of average rank variation

G1 G2 G3 G4 G5 G6 G7 G8
CAT Turing Test

ARV Rank ARV Rank

Benchmarks

CAT 5 3 2 7 6 4 1 8 – – – –

Turing test 6 4 3 2 5 7 1 8 – – – –

Evaluation metrics

IS 5 7 2 4 6 1 3 8 1.5 1 2.0 3

FID 8 5 6 1 4 3 2 7 2.5 5 1.75 1

GMM-GIQA 7 5 4 6 1 2 3 8 2.0 3 2.25 4

KNN-GIQA 8 6 4 5 3 2 1 7 2.0 3 1.75 1

CLIP: DALL⋅E’s

Text-image 4 7 8 5 6 1 3 2 3.0 6 3.5 6

CLIP: base–additive’s

Text-image 5 7 8 6 1 3 4 2 3.25 7 3.75 7

CLIP: image-image 1 8 2 5 6 4 3 7 1.75 2 2.5 5

The ARV of CAT with TT 1.5
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ARV is based on Spearman’s Footrule (Diaconis and Graham,
1977), and it compared the consistency between each metric
and the benchmarks on the overall quantitative results of G1 to
G8. The consistency results of each metric with external valida-
tion on the CR and ARV are comparable. A comprehensive anal-
ysis of this consistency can identify whether a metric matches the
external validations. The metric with a degree of consistency close
to the external validations can be considered as a potential auto-
mated method for assessing the image containing combinational
creativity.

Although the CR of GIQA in the CAT dropped compared
with that of in the TT, it still shows the best consistency perfor-
mance in the overall CAT. Although the ARV ranking of
KNN-GIQA in the CAT dropped two places from TT, the aver-
age ARV score of GIQA remains the same. Considering CR and
ARV together, the highest consistency with both CAT and TT is
the GIQA series which includes KNN-GIQA and GMM-GIQA.
Despite IS receiving an average score of 17.5 on the ARV rank-
ing, its CR result has a large gap compared with CAT and TT.
We thus did not recommend using IS for assessing image’s
combinational creativity. In the CR result GMM-GIQA
obtained the first rank, but it received an average score of
2.125 which followed that the scores of IS in ARV ranking.
The reason behind this seemed to be more pronounced on
the GMM-GIQA using the GMM (Gu et al., 2020). In CLIP
experiments, two CLIP text-image methods both had higher
ARV scores. As the feature distribution on the training set
does not match that on the combinational creativity image
set, we do not recommend the use of CLIP test-image for com-
binational creativity assessment. The scores and rankings of
ARV of CLIP text-image in CAT and TT are stable, yet CLIP

image-image fluctuated considerably. A possible explanation
for this might be that the set of textual mappings is disjoint
with the set of image mappings in the embedding space of
CLIP, yet in the image-image method, the two embeddings
are closer together in the image-image method (Liang et al.,
2022). By averaging the summation of the CR ranking of and
ARV ranking of in each evaluation method separately, we pre-
sented the final suggestions of their performance and applic-
ability as well as the strengths and weaknesses for assessing
images containing combinational creativity, as shown in
Table 15. In contrast to human-evaluation based assessments
such as CAT and TT, the four metrics are not labor-intensive.
They can automatedly complete creativity assessment in a
short time.

In general, we suggest using GMM-GIQA and KNN-GIQA as
an automatic combinational creativity assessment in the cases
where images are generated by machines, no experts available
or where image data amount is too large to complete manually.
For the human-designed images with a small sample, we still
recommend using traditional assessments such as CAT. Future
research can introduce the large base–additive dataset to identify
the most accurate hyperparameter of GIQA. As GIQA can rank
individual images, future research comparing with the CLIP in
terms of accuracy in the assessment for combinational creative
images is therefore suggested.

Conclusion

This study is a preliminary exploration of using four image quality
evaluation metrics in the field of computer vision to identify the
applicability in assessing generative images containing

Table 15. Suggestions of image metrics for assessing combinational creativity

Rank Metrics Advantage and defect

1 GMM-GIQA • The result was closely similar to CAT and TT.
• The ability to score and rank the quality of individual images; the opportunity to introduce the text-to-image generative
model for reranking images containing combinational creativity.

• Being unable to determine the most accurate hyperparameter M on MS-COCO, which might have a higher value than the
current accuracy rate.

2 KNN-GIQA • The result was similar to TT as GMM-GIQA and was able to score and rank the quality of individual images.
• Being unable to determine the most accurate hyperparameter K on MS-COCO. Future work can focus on this issue.

3 CLIP: image-image • The most consistent metric with CAT and TT among the CLIP-derived methods; the weak ability to reflect the degree of
quality difference in intra-group.

• Requiring the construction of the base–additive dataset; the calculation process was time-consuming.

4 FID • The result matched TT to some extent, but the consistency of the CAT was not satisfactory.
• The ability to individually measure the result of images composed by two elements.
• Additional work was required to build the base–additive dataset and the measurement process was tedious.

5 IS • The result of ARV matched the CAT, but the CR is not a satisfactory score compared with that of the CAT.
• There was a gap with TT, especially its CR.

6 CLIP: base–
additive’s
text-image

• No real dataset required, easy calculation.
• The result was not suitable for assessing images containing combinational creativity.

7 CLIP: DALL⋅E’s
text-image

• The result was the most different from the CAT and TT, despite being used for the reranking work of DALL⋅E and a similar
text-to-image generative model.

• The result was not suitable for assessing images containing combinational creativity.
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combinational creativity. Although existing traditional creativity
assessments such as CAT and TT are widely used to assess crea-
tivity, they are still time-consuming to implement and expensive
to recruit assessors. In this paper, four metrics (IS, FID, GIQA,
and CLIP) for image quality assessment are considered as poten-
tial automated means of assessing combinational creativity.
However, these four metrics are not directly comparable with
each other, as they each have a different starting point and math-
ematical principle. To address this challenge, we first collected the
images containing combinational creativity from DALL⋅E and
human designers as the eight groups to be assessed. We used
the ranking results from the eight groups creativity assessment
based on human evaluation (i.e., CAT and TT) as the benchmarks
and indirectly assessed the performance of the four metrics. The
overall consistency of ranking results with CAT and TT can reflect
the capacity of the metrics to assess combinational creativity in
generative images to some extent. By comparing the consistency
with the CR and ARV of the benchmarks, the results show that
not all metrics are applicable to assessing images containing com-
binational creativity. In the four metrics, the GIQA had shown the
closest consistency to the TT. It also showed the potential value of
assessing combinational images containing combinational creativ-
ity and even the ranking of creative text-to-image generative mod-
els. Although the IS and FID had shown a certain degree of
consistency with the CAT and TT separately, they often carry
with tedious and time-consuming calculating problems. We
doubt the authenticity and reference of the CLIPs in the context
of assessing combinational creative images, and do not recom-
mend using CLIPs as an assessment for image’s combinational
creativity. In summary, GIQA showed a high level of agreement
with the results of the human creativity assessment, which can
be regarded as a potential metric for automated combinational
creativity assessment. It also can be used to evaluate the images
containing combinational creativity such as image-based concep-
tual sketch, digital design image, and even the prototyping image
in the tasks of creative design and engineering.

Financial support. This paper is funded by the National Natural Science
Foundation of China (No. 62207023) and The Ng Teng Fong Charitable
Foundation in the form of ZJU-SUTD IDEA Grant.

Conflict of interest. The author(s) declare none.

References

Adams SS, Banavar G and Campbell M (2016) I-athlon: towards a multidi-
mensional turing test. AI Magazine 37, 78–84.

Amabile TM (1982) Social psychology of creativity: a consensual assessment
technique. Journal of Personality and Social Psychology 43, 997.

Amabile TM and Hennessey B (1999) Consensual assessment. Encyclopedia
of Creativity 1, 347–359.

Amato G, Behrmann M, Bimbot F, Caramiaux B, Falchi F, Garcia A, Geurts
J, Gibert J, Gravier G, Holken H and Koenitz H (2019) AI in the media
and creative industries. arXiv preprint arXiv:1905.04175.

Boden MA (2004) The Creative Mind: Myths and Mechanisms. London:
Psychology Press.

Boden MA (2010) The turing test and artistic creativity. Kybernetes. 39,
409–413.

Borji A (2019) Pros and cons of GAN evaluation measures. Computer Vision
and Image Understanding 179, 41–65.

Bringsjord S, Bello P and Ferrucci D (2003) Creativity, the turing test, and
the (better) lovelace test. In Moor JH (ed.), The Turing Test: The Elusive

Standard of Artificial Intelligence. Dordrecht: Springer Netherlands, pp.
215–239.

Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P,
Neelakantan A, Shyam P, Sastry G, Askell A and Agarwal S (2020)
Language models are few-shot learners. Advances in Neural Information
Processing Systems 33, 1877–1901.

Bujang MA, Omar ED and Baharum NA (2018) A review on sample size
determination for Cronbach’s alpha test: a simple guide for researchers.
The Malaysian Journal of Medical Sciences: MJMS 25, 85.

Burnard Pamela and Anne Power (2013) Issues in conceptions of creativity
and creativity assessment in music education. In Handbook of Research
on Creativity. Cheltenham: Edward Elgar Publishing, pp. 212–229.

Chen L, Wang P, Dong H, Shi F, Han J, Guo Y, Childs PR, Xiao J and
Wu C (2019) An artificial intelligence based data-driven approach for
design ideation. Journal of Visual Communication and Image
Representation 61, 10–22.

Chu H, Urtasun R and Fidler S (2016) Song from PI: a musically plausible
network for pop music generation. arXiv preprint arXiv:1611.03477.

Cropley DH and Kaufman JC (2013) Rating the creativity of products. In
Handbook of Research on Creativity. Edward Elgar Publishing.

Davis GA (1975) In frumious pursuit of the creative person. The Journal of
Creative Behavior 9(2), 75–87.

Denson C, Buelin J, Lammi M and D’Amico S (2015) Developing instru-
mentation for assessing creativity in engineering design. Journal of
Technology Education 27, 23–40.

Diaconis P and Graham RL (1977) Spearman’s footrule as a measure of dis-
array. Journal of the Royal Statistical Society: Series B (Methodological) 39,
262–268.

Ding M, Yang Z, Hong W, Zheng W, Zhou C, Yin D, Lin J, Zou X, Shao Z,
Yang H and Tang J (2021) CogView: mastering text-to-image generation
via transformers. Advances in Neural Information Processing Systems 34,
19822–19835.

Frolov S, Hinz T, Raue F, Hees J and Dengel A (2021) Adversarial
text-to-image synthesis: a review. Neural Networks 144, 187–209.

Gu S, Bao J, Chen D and Wen F (2020) GIQA: Generated Image Quality
Assessment. Glasgow. Computer Vision–ECCV 2020: 16th European
Conference, 23–28.

Guo J, Lu S, Cai H, Zhang W, Yu Y and Wang J (2018) Long text gen-
eration via adversarial training with leaked information. Paper pre-
sented at the Proceedings of the AAAI Conference on Artificial
Intelligence.

Han J (2018) Combinational creativity and computational creativity.
Heusel M, Ramsauer H, Unterthiner T, Nessler B and Hochreiter S (2017)

GANs trained by a two time-scale update rule converge to a local Nash
equilibrium. Advances in Neural Information Processing Systems 30,
6626–6637.

Kaufman JC, Baer J, Cole JC and Sexton JD (2008a) A comparison of expert
and nonexpert raters using the consensual assessment technique. Creativity
Research Journal 20, 171–178.

Kaufman JC, Plucker JA and Baer J (2008b) Essentials of Creativity
Assessment. Hoboken: John Wiley & Sons.

Kaufman JC, Baer J, Agars MD and Loomis D (2010) Creativity stereotypes
and the consensual assessment technique. Creativity Research Journal 22,
200–205.

Kim D-H (2019) Evaluation of coco validation 2017 dataset with yolov3.
Evaluation 6, 10356–10360.

Kosslyn SM, Ganis G and Thompson WL (2001) Neural foundations of ima-
gery. Nature Reviews Neuroscience 2, 635–642.

Liang W, Zhang Y, Kwon Y, Yeung S and Zou J (2022) Mind the gap: under-
standing the modality gap in multi-modal contrastive representation learn-
ing. arXiv preprint arXiv:2203.02053.

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P and
Zitnick CL (2014) Microsoft coco: common objects in context. Paper pre-
sented at the European conference on computer vision.

Mansimov E, Parisotto E, Ba JL and Salakhutdinov R (2015) Generating
images from captions with attention. arXiv preprint arXiv:1511.02793.

Muller W (1989) Design discipline and the significance of visuo-spatial think-
ing. Design Studies 10, 12–23.

18 Boheng Wang et al.

https://doi.org/10.1017/S0890060423000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060423000069


Pearce MT and Wiggins GA (2007) Evaluating cognitive models of musical
composition. Paper presented at the Proceedings of the 4th International
Joint Workshop on Computational Creativity.

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G,
Askell A, Mishkin P, Clark J, Krueger G and Sutskever I (2021)
Learning transferable visual models from natural language supervision.
Paper presented at the Proceedings of the 38th International Conference
on Machine Learning, Proceedings of Machine Learning Research. https://
proceedings.mlr.press/v139/radford21a.html

Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A and Sutskever I
(2021) Zero-shot text-to-image generation. Paper presented at the
Proceedings of the 38th International Conference on Machine Learning,
Proceedings of Machine Learning Research. https://proceedings.mlr.press/
v139/ramesh21a.html

Ramesh A, Dhariwal P, Nichol A, Chu C and Chen M (2022) Hierarchical
text-conditional image generation with CLIP latents. arXiv preprint
arXiv:2204.06125.

Ravuri S and Vinyals O (2019) Classification accuracy score for conditional
generative models. Advances in Neural Information Processing Systems 32,
12247–12258.

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A and Chen X
(2016) Improved techniques for training GANs. Advances in Neural
Information Processing Systems 29, 2226–2234.

Sarkar P and Chakrabarti A (2011) Assessing design creativity. Design Studies
32, 348–383.

Shin A, Crestel L, Kato H, Saito K, Ohnishi K, Yamaguchi M and Harada T
(2017) Melody generation for pop music via word representation of musical
properties. arXiv preprint arXiv:1710.11549.

Sternberg RJ and Kaufman JC (2018) The Nature of Human Creativity.
Cambridge: Cambridge University Press.

Torrance EP (1972) Predictive validity of the torrance tests of creative think-
ing. The Journal of Creative Behavior 6(4), 236–252.

Turing I (2007) Computing machinery and intelligence-AM turing.Mind 59, 433.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN and

Polosukhin I (2017) Attention is all you need. Advances in Neural
Information Processing Systems 30, 6000–6010.

Ward TB and Kolomyts Y (2010) Cognition and creativity. In The Cambridge
Handbook of Creativity, pp. 93–112.

Yang L-C and Lerch A (2020) On the evaluation of generative models in
music. Neural Computing and Applications 32, 4773–4784.

Zhang H, Yin W, Fang Y, Li L, Duan B, Wu Z,… and Wang H (2021)
ERNIE-ViLG: unified generative pre-training for bidirectional vision-
language generation. arXiv preprint arXiv:2112.15283.

Boheng Wang is a PhD student at the Dyson School of Design Engineering at
the Imperial College London, London, UK. His research focuses on compu-
tational creativity, design knowledge retrieval, and data-driven design. His
research interests fall within AI-aided design, 3D based knowledge retrieval
and combinational creativity.

Yunhuai Zhu is an undergraduate majored in computer science and technology
at the College of Computer Science and Technology, Zhejiang University. His
research interests include: data analysis and computational creativity.

Liuqing Chen is a ZJU-100 Young Professor at the College of Computer
Science and Technology, Zhejiang University, Hangzhou, China. His
research interests include: Design Intelligence, Computational creativity,
UI Design, Human-computer interaction, and Artificial intelligence.

Jingcheng Liu is an undergraduate majored in electrical engineering and auto-
mation at the International campus, Zhejiang University. His research interests
include: big data and artificial intelligence, and application of AI in design.

Lingyun Sun is a Professor at Zhejiang University. His research interests
include Big Data and AI, Digital Twins, Human-Computer Interaction,
Information Visualization. He is currently the Vice Dean of College of
Computer Science and Technology at ZJU and the director of
International Design Institute at ZJU.

Peter Childs is the Professorial Lead in Engineering Design and was the
founding Head of the Dyson School of Design Engineering at Imperial
College London. His general interests include creativity, innovation, design;
sustainable energy and robotics. He is the Editor of the Journal of Power and
Energy, Professor of Excellence at MD-H, Berlin, Advisor Professor at
Guangdong University of Technology, the Advisory Chair for the
Leonardo Centre on Business for Society, and Director and Chairperson at
BladeBUG Ltd and Founder Director and Chairperson at QBot Ltd.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19

https://doi.org/10.1017/S0890060423000069 Published online by Cambridge University Press

https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1017/S0890060423000069

	A study of the evaluation metrics for generative images containing combinational creativity
	Introduction
	Related work
	Generative model
	Combinational creativity
	Consensual assessment technique
	Turing test
	Metrics for assessing generative images quality

	The assessment method
	Method overview
	Machine and human datasets
	Base--additive dataset

	Evaluation experiment
	Consensual assessment technique
	Turing test
	Metrics for generative models

	Evaluation result analysis
	Result of CAT
	Result of TT
	Result of IS
	Result of FID
	Result of GIQA
	GMM-GIQA
	KNN-GIQA

	Result of CLIP
	CLIP: text-image
	CLIP: image-image

	Metrics ranking

	Discussion
	Conclusion
	References


