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ABSTRACT 
Layout is essential for the product listing pages (PLPs) in mobile 
shopping applications. To clearly convey the information that con-
sumers require and to achieve specifc functions, PLPs layouts often 
have many variations driven by scenarios. In this work, we study 
the PLPs layout design for diferent scenarios and propose a de-
sign space to guide the large-scale creation of PLPs. We propose 
LayoutVQ-VAE, a novel model specialized in generating layouts 
with internal and external constraints. LayoutVQ-VAE difers from 
previous methods as it learns a discrete latent representation of lay-
out and can model the relationship between layout representation 
and scenarios without applying heuristics. Experiments on pub-
licly available benchmarks for diferent layout types validate that 
our method performs comparably or favorably against the state-
of-the-art methods. Case studies show that the proposed approach 
including the design space and model is efective in producing large-
scale high-quality PLPs layouts for mobile shopping platforms. 
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1 INTRODUCTION 
The product listing pages (PLPs) on mobile shopping platforms, 
where a number of products are displayed and recommended to 
consumers for marketing purposes [28], are usually composed of 
well-arranged product images and attribute information (product 
title, price, discount, sales, etc.)[13]. In order to clearly demonstrate 
the characteristics of products and quickly engage consumers, PLPs 
layouts are created based on both the external constraints - shop-
ping scenarios and the internal constraints - UI elements to be 
presented. Moreover, even if the elements are the same, the layouts 
may still vary because diferent information needs to be emphasized 
in diferent scenarios [36]. Figure 1 shows examples of real-world 
PLPs in diferent shopping scenarios and corresponding layouts. It 
can be seen that the PLPs in the recommendation (frst row) mainly 
show images of a variety of products, while the PLPs in the search 
result (second row) mainly display the attribute information of a 
smaller number of products belonging to the same category. In 
addition, each PLP layout can be divided into two parts: mall layout 
and product card layout, where mall layout segments the entire 
PLP into several regions, and each region is flled with a product 
card layout for displaying a product. 

Massive PLPs layouts need to be created when developing and 
running a large mobile shopping platform. However, designing a 
high-quality layout is an empirical and time-consuming process 
for designers [4, 32]. It is prohibitively expensive and slow for e-
commerce companies to complete this extensive work manually. 
Traditional solutions are mainly based on generic templates created 
by designers and produce a layout by selecting a template that 
best fts the given UI elements [41]. In practical work in industry, 
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Figure 1: Industrial multi-product display interfaces from Amazon Shopping (frst column) and Alibaba.com (second column). 
The two examples in the frst row are obtained from the homepage recommendation section of the two mobile shopping apps, 
and the ones in the second row are the results of searching for the product "pen". 

designers frst complete the mall layout design and UI element 
selection. Then product card layouts are created by the template-
based generative method. Although template-based method can 
reduce the workload of designers, such a predefned and limited set 
of templates cannot adequately refect the rich layout variations, nor 
can perform well in scenario-based and customized layout design 
which requires multiple distinct layouts for diferent scenarios. 

Recently, since deep generative models have shown great 
promise in learning a real data distribution and rapidly generating 
large-scale distinct samples, the feld of data-driven layout genera-
tion has received extensive attention, and various layout generation 
methods have been proposed [2, 10, 19, 25]. Most methods represent 
the layout with a list of bounding boxes of UI elements and defne 
the layout generation task as predicting the attributes of bounding 
boxes. Some of them [2, 10, 25] only focus on unconditional layout 
generation where the attributes of UI elements in the generated 
layout are random and uncontrollable, others only implement con-
ditional layout generation based on internal constraints such as 
element labels [19, 23] or content [41]. To the best of our knowl-
edge, no prior published study considers the impact of external 
scenarios on layout design. Thus, no prior method can be applied to 
the layout design of PLPs which is heavily infuenced by shopping 
scenarios. 

In this work, we take a step toward investigating how shopping 
scenarios afect PLPs layouts and assisting designers in efciently 
creating large-scale PLPs layouts with constraints of external sce-
narios and internal element labels. We frstly report the interviews 
about PLPs layout design with four designers, and summarize three 
popular product display scenarios in mobile shopping apps and the 
workfow of creating PLPs layouts. Then, in order to study explicit 
features of layouts, we introduce a dataset PDCard, which contains 

product card layouts annotated with shopping scenarios from a 
highly popular mobile shopping app, and analyze the explicit fea-
ture distribution of the layouts for diferent scenarios. Next, based 
on the above interviews and data analysis, we propose a design 
space of PLPs layout design for diferent scenarios. In this design 
space, we discuss the three popular scenarios from three perspec-
tives including consumer, product, and layout pattern, and conclude 
the principles of mall layout design and UI elements selection. Fi-
nally and most importantly, to address the challenge on complex 
and time-consuming arrangement of elements in the product card 
layouts, we introduce a novel generative model, denoted LayoutVQ-
VAE, that is capable of synthesizing multiple layouts based on the 
internal element labels and external scenarios within seconds. In 
the model, we innovatively propose the discrete latent represen-
tation of layouts by training a novel VQ-VAE [37] and model the 
relationship between the layout representation and constraints 
through a unidirectional Transformer [38]. The discrete latent vec-
tor can avoid “posterior collapse” which is often encountered in 
the training of VAE models [2]. 

We summarize our contributions in the following: 

(1) Design Space: We propose a design space to guide the cre-
ation and evaluation of PLPs layouts for diferent scenarios 
in mobile shopping applications. In particular, to quantita-
tively analyze the explicit features of the layouts and provide 
a basis for the proposal of the design space, we construct a 
dataset, called PDCard, by collecting 2,575 annotated prod-
uct card layouts from a mobile shopping App. The dataset 
can also be utilized in other related studies. 

(2) LayoutVQ-VAE: We propose a novel generative model spe-
cialized in generating layouts satisfying both internal and 
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external constraints (element labels and scenarios). Discrete 
latent representation of layouts allows us to improve the 
quality of generated layouts and better model the relation-
ship between layout and discrete constraints. 

(3) Evaluation: The qualitative and quantitative experiments 
on three public layout datasets and our proposed dataset val-
idate that our model outperforms the state-of-the-art models 
in terms of realism, aesthetics, and scenario relevance. The 
case studies on the PDCard dataset demonstrate that our pro-
posed model can generate layouts conforming to the scenario 
constraints, and our approach can signifcantly reduce the 
time to produce large-scale and diverse PLPs layouts, with 
the promise of greatly improving UI development efciency 
in industry. 

2 RELATED WORK 

2.1 Graphic Layout Generation 
Automatic layout generation is a classic research topic. With the 
great success of deep generative models in the feld of computer 
vision, such as Generative Adversarial Networks (GANs) [8] and 
Variational Autoencoders (VAEs) [22], researchers applied them 
to graphic layout generation. LayoutGAN [25] is the frst work to 
utilize a GAN framework for this task, which also proposes a wire-
frame renderer to evaluate the layout at the pixel level. READ [31] 
trains a VAE which is based on Recursive Neural Networks (RvNNs) 
[7] to model the layout distribution. NDN [24] models a design lay-
out as a graph and applies Graph Convolution Networks (GCNs) 
[34] to capture the dependency among elements. However, NDN 
and READ both use heuristics to label the relationship between ele-
ments, which are limited to datasets with similar labels and unable 
to model element relationships uniformly, and comprehensively. 
Gupta et al. [10] and VTN [2] address this problem by exploiting the 
multi-head attention mechanism in Transformers [38], and employ 
an autoregressive decoder to model the distribution of layout. A 
recent work [16] considers segmenting a layout into several regions 
and decomposing the generation process into two stages, which 
efectively improves the quality of generated layouts with lots of 
elements. However, few of the above studies consider the layout 
generation with conditions (e.g., type and number of elements), 
which does not satisfy the real-world needs of generating layouts 
with some known elements and scenarios. 

To achieve conditional layout generation, LayoutVAE [17] ap-
plies a VAE framework to generate scene layouts according to a 
given label set. Zheng et al. [41] propose a content-aware layout 
generation framework that can synthesize layouts based on visual 
and textual semantics of designer inputs. Guo et al. [9] propose 
Vinci that can automatically select design materials and templates 
based on product images and text descriptions input by designers, 
and fnally synthesize an advertising poster. BLT [23] proposes a 
bidirectional layout transformer that frst generates a draft layout 
based on the designer inputs and then refnes the layout iteratively. 
Kikuchi et al. [19] present LayoutGAN++ and CLG-LO which satisfy 
the constraints via optimizing the layout latent. The latest study 
CanvasVAE [39] defnes vector graphic documents by a multi-modal 
set of attributes about canvas and elements and trains a VAE to 
learn the representation of document layout. Nevertheless, there 

are two problems with these studies. Firstly, most of them only con-
sider element and canvas labels and do not meet the requirements 
of scenarios (e.g., for PLPs, diferent scenarios require diferent 
information types and arrangements). Although Zheng et al. [41] 
take the magazine category as a conditional input to the model, the 
output of its generator is a noisy image, which cannot respect the 
aesthetic rules and requires post-processing work such as element 
recognition and correction. Secondly, LayoutVAE, LayoutGAN++, 
CanvasVAE, and [41] use continuous latent to represent layouts, 
making it difcult to model the relationship between layouts and 
discrete conditions. To advance these problems, our work intro-
duces scenario constraints and the discrete latent representations 
of layouts. 

2.2 Product Listing Page Design in Online 
Shopping Applications 

UI design in shopping platforms is of enduring interest to re-
searchers as online shopping tends to be a mainstream shopping 
way. Of special interest is the design of PLPs, which has been shown 
to have a great infuence on the trafc and sales volume on a web-
site in early research [28]. In PLPs, two major information types, 
visual and textual information, govern the modalities of consumers 
in acquiring product-related information [13]. Prior studies have 
debated which of both two information types can enhance the shop-
ping performance of consumers, wherein some studies suggest that 
visual product information is superior to textual information, espe-
cially in terms of search time, recall of brand names and product 
images, and shopping experience [13, 15]. On the contrary, other 
scholars have indicated that textual product information is more 
able to facilitate shopping performance in terms of product attribute 
recall and perception [20]. Recently, some studies have further ex-
plored the efects of dynamic visual forms such as video and virtual 
reality on consumers’ shopping performance [11, 21, 40]. In this 
paper, we unifed these dynamic visual forms as image information 
for simplicity. In addition, some scholars suggest that the impact of 
PLPs on consumers’ online shopping performance depends on the 
amount of information conveyed through online product presenta-
tions [29]. For instance, Sicilia and Ruiz [35] reported that both the 
absence and the excess of information result in a lack of attention 
to the product. Li et al. [27] suggested that the visual-based online 
product representation has a greater impact on high information 
load, while the text-based has greater performance advantages un-
der the condition of low information load. Unlike previous studies, 
this paper discusses the efects of the two major information types 
and the balance of information load on consumers’ online shop-
ping performance in diferent shopping scenarios, and accordingly 
proposes suggestions for PLP layout design. 

3 INTERVIEWS AND DESIGN SPACE 
We aim to propose an approach to solve the mass production prob-
lem of PLP layouts in industry, which usually change with diferent 
shopping scenarios. To gain insight into the motivations, rules, and 
workfow of scenario-based layout design, we conducted in-depth 
interviews with four experts. In addition, we built a ProDuct Card 
layout dataset, named PDCard, to analyze the explicit features of 
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the layouts. Based on the interviews and the analysis of the dataset, 
we propose a design space for layout design in diferent scenarios. 

3.1 Expert Interviews 
We conducted an interview with four experts individually. Two of 
them (E1 and E2) are senior UI designers from a large e-commerce 
company with more than eight years of design experience, and 
the remaining two (E3 and E4) are UX designers from the same 
company with more than three years of design experience. The 
average interview time is about 40 minutes. The questions in the 
interview mainly involved the following three topics: (1) why the 
shopping scenario is considered when designing the layouts of 
shopping apps; (2) the classifcation of scenarios in shopping apps; 
(3) the workfow of designing PLPs layouts. The feedback of the 
experts is summarized in the following: 

Importance of the application scenario All designers agreed 
that rich PLP layout variations in shopping apps are largely driven 
by the shopping scenarios [14]. One of the reasons is that entering a 
certain scenario is a refection of consumer intent which determines 
what information consumers require and should be displayed. For 
example, E1 said that “The consumers without clear goals usually 
browse the recommendation section on the home page, so we need 
to show a variety of products and attempt to attract them; for those 
with clear targets, they often search for the target product directly 
and want to obtain more sales information from diferent stores.” E4 
commented that, “images and videos are more attractive to consumers 
when they are browsing, but they will pay more attention to quality-
related information of the product before making a purchase decision”. 
Another main reason is that shopping scenarios afect the style of 
layout as diferent styles can infuence consumers’ shopping perfor-
mance from diferent aspects, E2 explained that “irregular layouts 
can attract the attention of consumers with vague interests, such as 
asymmetrical layouts, instead regular layout is more conducive for 
consumers to compare the products.” Based on the above feedback, 
we are inspired to describe the features of diferent scenarios in 
terms of consumer, product information, and layout pattern, and 
further extend them as three dimensions of the design space in 
section 3.3. 

Classifcation of the scenarios Each designer classifed the 
shopping scenarios from diferent perspectives. E1 classifed them 
according to the categories of displayed products: scenarios for 
electronics, apparel, foods, and so on. E2 classifed them based on 
the functionality of scenarios, including the recommendation page, 
the category page, and the search page. E3 divided them into three 
categories according to the mentality of consumers: scenarios for 
consumers without a target, with a vague target, and with a clear 
target. And the classifcation result of E4 is similar to that of E2. De-
spite the designers adopt diferent classifcations, there are strong 
correlations among them. For example, the pages with diferent 
functionalities proposed by E2 can meet the needs of various con-
sumers proposed by E3, and the presentation of diferent products 
proposed by E1 can also be incorporated into the category page 
proposed by E2. Finally, to comprehensively cover diferent shop-
ping scenarios, we adopt the classifcation based on the scenario 

functionality, that is, the pages for product recommendation, prod-
uct by category, and product search. For the features of consumers 
and product categories, we will discuss them in section 3. 

Layout Design workfow Given a particular scenario, design-
ers usually design the PLP layouts through the following three 
steps: Firstly, they need to design the mall layout which divides 
the whole PLP into several product cards. E2 commented that “The 
single-column mall layout is more suitable for displaying the results of 
searching for a certain product, yet the double-column layout is better 
for the recommendation interface of homepage and category page.” 
Secondly, designers select how many and which UI elements to dis-
play in each card, E1 explained that “usually an product card includes 
a main image of product, a title and several attribute elements, such 
as price, benefts information, etc.” Finally, the product card layout is 
designed based on the given scenario and selected elements, includ-
ing the size of elements and the appropriate position. For example, 
E1 shared his design experience that “For consumers who do not have 
clear goals and strong interests, we design a layout by placing images 
and videos with a large area, because visual information can be un-
derstood faster than textual information, and it is easier to stimulate 
consumer interest. On the contrary, for consumers with clear goals, 
we place discounts and sales information in a prominent position to 
increase their purchase intention.” According to the workfow and 
experience provided by the experts, we can infer the explicit design 
rules from the frst two steps and summarize them in the design 
space. However, due to complex element relationships and various 
arrangements, the product card layout design in the third step is 
difcult to formalize with heuristic rules. To this end, we propose a 
deep generative model for constrained layout generation. 

3.2 Dataset 
Generating layouts with a machine learning model requires a large 
product card layout dataset with ground-truth layout annotations. 
Although there are some publicly available UI design datasets such 
as Rico [5] and VINS [3], they only contain geometric information 
of each element in layout and are not labeled with particular sce-
narios. The layouts in the Magazine dataset [41] are labeled with 
six magazine categories, which is similar to our shopping scenarios, 
but not applicable to online shopping apps. To address this chal-
lenge, we created PDCard dataset by collecting 2,575 product card 
layouts from Taobao, the most popular online shopping platform 
in China. All layouts were initially collected in the form of design 
drafts produced by Sketch [1], and fnally annotated with the three 
shopping scenarios and bounding boxes describing the boundaries 
of UI elements. The scenarios where the design drafts are used in 
the real world provided a preliminary defnition for the annotations 
of the shopping scenarios (e.g., Popular products recommendation, 
Beauty products, ...), then two interviewed designers were invited 
to check the initial annotations and the group them into the three 
popular scenarios we defned and they receive $12 per hour as re-
muneration. The bounding boxes were automatically extracted by 
a program from the design drafts, which contain detailed geometric 
parameters of each bounding box. The aspect ratio of layouts in the 
dataset is not exactly the same, there are seven aspect ratios: 3:7, 
1:2, 3:5, 3:4, 5:4, 2:1, and 5:2. The numbers of layouts for the seven 
aspect ratios are 266, 445, 794, 242, 214, 416, and 198. According 
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Figure 2: Quantitative analysis of layouts in PDCard dataset. (a) the distribution of the image proportion of layouts for three 
scenarios; (b) the distribution of text proportion of layouts for three scenarios; (c) the distribution of layouts for three scenarios 
under diferent aspect ratios; (d) the distribution of layouts for three scenarios under diferent numbers of attribute elements. 

to the UI design specifcations of Taobao, the elements in layouts 
are divided into eight categories: image, title, price, description, 
beneft, data, service, and action point, where the last six categories 
describing product attributes are uniformly represented as attribute 
elements in the design space. Examples of product card layouts in 
PDCard are given in the supplementary materials. 

To explore the explicit characteristics of layouts suitable for 
diferent scenarios, we calculated the proportion of two main in-
formation types in PLPs layouts: image proportion ���� and text 
proportion ���� [13]. We also counted the frequency distribution 
of the layout aspect ratio � and the number of layout attribute 
elements ����� . Note that the text proportion is the percentage 
of area occupied by the title and attribute elements. Figure 2 is a 
visualization of the above calculation results. It can be seen from 
2(a) that the layouts for scenario I (product recommendation) have 
the highest ���� , followed by scenario II (product by category) and 

the lowest in the scenario III (product search), but the distribution 
of ���� (seen in 2(b)) is completely opposite, which means scenario 
I focuses on visual information, while scenario III emphasizes tex-
tual information. The statistical results of aspect ratio (seen in 2(c)) 
demonstrate that the layouts for scenario I and II are mainly verti-
cal layouts (� >1), rather the layouts for scenario III are horizontal 
layouts (� <1). From 2(d) we can see that most layout for scenario 
II have more attribute elements than layouts for scenario I, and 
the number of attribute elements in layouts for scenario III varies 
widely, with 4 or 5 being the majority. 

3.3 Design Space Overview 
This section introduces a design space for PLPs layouts applied to 
diferent scenarios. Figure 3 shows the overview of the design space. 
Based on the feedback of the interviews, we classify the scenarios 
for PLPs in mobile shopping into 3 categories: the scenarios for 
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Figure 3: Design space for creating PLPs layouts applied to diferent scenarios in mobile shopping apps. 

product recommendation, product by category, and product search. Consumers entering this scenario often have no clear shopping 
For each scenario, we introduce the corresponding mental and targets, and just aimlessly browse product cards. If these cards 
behavioral characteristics of consumers. According to the mentality do not arouse any interest of consumers, they will have a high 
and behavior of consumers, we analyze what product information probability of leaving, so PLPs in this scenario need to present as 
needs to be presented by PLPs and how to present it. Finally, we various products as possible. Furthermore, due to the superiority of 
propose some explicit layout design rules and metrics based on visual over textual information in terms of recall and recognition 
the designers’ insights in section 3.1 and the analysis results of the [13, 15], product information is mainly presented in the form of 
PDCard dataset in section 3.2. images. Externalized to the layout pattern, the mall layout in this 

Product Recommendation This is a scenario showing products scenario usually adopts many small product cards and arranges 
recommended by a recommendation system, usually existing in them in two or three columns. The design of card layout often 
the homepage of shopping malls on mobile shopping platforms. chooses a moderate aspect ratio (e.g., 5:3, 4:3, 4:5, . . . ) and very 
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few attribute elements, but the image area accounts for a large 
proportion, usually between 0.68 and 0.84. 

Product by Category This is a scenario showing products by 
category, usually located in the page “All categories”. Consumers 
entering this scene are usually more interested in a certain category 
of products (e.g., Electronics, Beauty, Apparel, . . . ). In terms of 
behavior, consumers are more active and try to fnd more attractive 
products. In this scenario, PLPs should display diverse products 
within the scope of the major category and outstanding features 
of products to convert consumers’ interests into purchase desires 
[20]. The mall layout is dominated by two columns and misaligned 
medium-sized product cards. The card layout typically applies large 
or medium aspect ratios (e.g., 7:3, 2:1, 5:3, . . . ) and two to four 
attribute elements that contain the main features of the product. 
Its image and text proportion are also moderate compared to other 
scenarios. 

Product Search This is a scenario showing the products con-
sumers are searching for. In this scenario, consumers already have 
a clear purchase target (e.g., smartphone, lipstick, shirt, . . . ), and try 
to compare the price, quality, and other details of diferent products 
to assist their decision-making. Textual information, as a superior 
information presentation type [33], has a more signifcant impact 
on consumers’ purchase intention and decision-making than vi-
sual information [20], and a regular layout is more conducive for 
consumers to compare and inspect products. Therefore, it is rec-
ommended that PLPs present a small number of products on the 
screen, and provide more textual information about products. To 
be specifc, the mall layout in this scenario is better to leverage 
single-column and large product cards. The card layout accordingly 
adopts a horizontal layout where attribute elements dominate. 

4 LAYOUT GENERATION MODEL 
Given a particular scenario, we can determine the mall layout (single 
column or two columns) of PLPs and select the elements for each 
product card based on the design space in section 3.3. For the 
complex and massive product card layout design, we introduce a 
generative model, denoted LayoutVQ-VAE, to synthesize layouts 
constrained by scenarios and element labels (number and category). 
In this section, we discuss the problem formulation and how we 
combine VQ-VAE [37] and Transformers [38] to learn the discrete 
latent representation of layouts. Pairing the representation with 
corresponding constraints, we can generate high-quality layouts 
that well match the constraints. 

4.1 Problem Formulation 
A graphic layout consists of a list of design elements. Our goal 
is to predict the size and coordinates of these elements based on 
given constraints, including external constraint - scenario of a 
layout, and internal constraints - number and categories of el-
ements. Specifcally, a graphic layout � ∈ � can be defned as 
� = [�, �1, �2, . . . , �� ], where � is its scenario, �� is the ��ℎ element 
and � represents the number of elements. For each element, we 
represent it by category and bounding box, i.e., �� = [�� , �� ], where h i 

� 
�� is the element category, �� = �� , � , �� , �ℎ represents the cen-

� � � � 
ter coordinates and size of the bounding box. The defnitions of 
scenario � and element category �� depend on the dataset (e.g., � 

represent the three shopping scenarios and �� represent the eight 
element categories in PDCard). In practice, we concatenate the geo-
metric parameters of all bounding boxes into a fattened sequenceh i 

� � 
� as � = �� 

1 , �1 , �1 
� , �ℎ 

1 , . . . , ��
� , �� , ��

� , �ℎ , and discretize the foat 
values using 7-bit uniform quantization [10]. Layout constraints(i.e., 
scenario and element category) can also be discrete vectors, so we 
project them and discretized geometric parameters into a same 
learned �-dimensional space, which is equivalent to project one-
hot encoded category vectors to the latent space. To correspond in 
position to the sequence of bounding boxes �, the d-dimensional 
feature vectors representing constraints are repeated and concate-
nated into sequences � and � with the same length as �. For brevity, 
we use �� , �� , �� , � ∈ (1, . . . , �), � ∈ (�,�, �,ℎ) to represent each 

� � �
feature vector in �, � , and � . 

To model the probability distribution of layouts � , prior works 
[2, 16, 39] leverage a VAE framework and train it with continuous 
latent variables. However, there are two issues in learning repre-
sentations of layouts with continuous features. Firstly, it is difcult 
and infeasible to reason the relationship between constraints and 
layouts, since the constraints are usually discrete (i.e., scenarios and 
element categories). Secondly, a well-known problem “posterior 
collapse” is typically observed in the VAEs with continuous latent 
variables, where the latent variables are often neglected when they 
have a powerful decoder such as LSTMs [12] and Transformers. In 
this work, we propose a novel method that synthesizes layouts by 
learning the discrete latent representations of layouts. In this way, 
the relationship between layout and discrete constraints is inter-
pretable and easily modeled by a powerful autoregressive network, 
which enables the model to generate higher quality layouts that 
match the constraints and even allows the model to avoid “posterior 
collapse” in VAEs [37]. 

4.2 LayoutVQ-VAE 
To learn the discrete latent representations of layouts � , we train a 
conditional VQ-VAE where the attention layers in Transformers are 
the backbone of the encoder and decoder. The model takes bounding 
boxes �, conditional element categories � and scenarios � as input, 
that are passed through an encoder producing a multi-head rep-� ��ℎ 

� resentation of layout �� (�,�, �) = �� 
1 (�,�, �) , . . . , � (�,�, �) , 

� where �� ∈ �� and �ℎ is the number of layout heads. For each vec-
� tor �� , we have a shared embedding space � that maps the vector to a 

� discrete latent vector �� by a nearest neighbor lookup. With the de-h i 
coder input being �� = �� 

1 , . . . , ��ℎ and the conditional sequences � 

� , � , the bounding boxes is reconstructed as �̂. After training, we 
use a unidirectional Transformer to model the prior distribution 
over the discrete latent �� , so that we can sample the discrete latent 
representations of layouts according to input constraints and gen-
erate layouts with the decoder. Our overall architecture is shown 
in Figure 4. 

Encoder Our encoder �� (�� |�,�, �) frstly uses a multi-layer 
perceptron to project each input item to a d-dimensional space and 
adds up with the position embedding [6] to obtain the hidden input 
of the Transformer block. Next, to map a layout into a fxed-size 
representation, the encoder prepends several learnable embeddings 
to the hidden inputs and uses the Transformer encoder to produce 
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Figure 4: The overview of LayoutVQ-VAE. 

vectors. The attention mechanism in Transformers has been proved 
to be efective at exploiting the complicated relationships between 
layout elements in prior works [2, 10]. Finally, the encoder output 
is limited to the fnal hidden vectors corresponding to the learnable 
embeddings which are considered to contain the characteristic 
information of the layout. The strategy we use to obtain the multi-
head layout representation is inspired by the sentence classifcation 
strategy in BERT [6]. We formulate our encoder in the following: 

ℎ� �� + �� � = �enc 
� 
� , ��

� , �� ; � 
� 

(1)� � , n o �� � �′ ℎ� � = Transformer � � , ; � , (2)� � � � 
� ′ �� = �dec � � ; � , (3) 

where �enc, �dec are multi-layer perceptrons, ℎ� is the hidden repre-
� 

sentation of each input item, �� is the learnable position embedding, 
� 

′ �� , � ∈ (1, . . . , �ℎ ) is the ��ℎ learnable embedding, � is the fnal hid-
� 

den vector of � � , hyperparameter �ℎ is the number of the learnable 
embeddings, � is the parameters of the encoder. 

Discrete Latent variables Following VQ-VAE [37], we defne 
a discrete latent embedding space � = [�1, �2, . . . , �� ] ∈ �� ×� to 

� quantize each layout head vector �� , where � is the size of the space, 
� and � is the dimension of �� . We map �� to the nearest element of 

embedding � as equation 4, so that we can obtain the discrete latent 
representation of layout: � � 

� � 
�� (�,�, �) = Quantize �� (�,�, �) = �� , 

(4)
� 

� = argmin� �� (�,�, �) − �� .
2� � 

Decoder Our decoder �� �̂ |��,�, � takes the quantized layout 
representation �� and conditions as input, passes the input through 
a Transformer encoder and fnally reconstructs the bounding boxes
�̂. 

ℎ� + �� � = �enc 
� 
��, ��

� , �� ; � 
� 

(5)� � , � �� � 
ℎ� ℎ� � = Transformer ; � , (6)� 

� � 
ℎ ′� �̂� = �dec � ; � , (7)� 

where �̂� is a reconstructed geometric parameter of bounding 
�

boxes, and � is the parameters of the decoder. We employ a non-
autoregressive decoder instead of an autoregressive one, because 
we fnd that the former can better understand the relationship be-
tween before and after elements and reconstruct a higher quality 
layout. 

Training The training objective of our model is to minimize: 

�(�, �̂; �, � ) = �� (�, �̂) + � ∥�� (�,�, �) − �� (�� )∥22 , (8) 

where �� is the reconstruction loss (i.e., the cross entropy loss), the 
second term is the commitment loss, � is the weight coefcient 
and we use � = 0.25 in all experiments, �� (.) represents the stop 
gradient operator that is defned as the following: ( 

� forward pass 
�� (�) = (9)

0 backward pass 
. 

Thus, the decoder is optimized by the reconstruction loss only, 
the encoder is optimized by the reconstruction and commitment 
loss, the embedding space is optimized via exponentially moving 
averages (EMA), as details in [18]. � �

Prior The prior distribution over the discrete latents � �� is a 
categorical distribution, thus we use a unidirectional Transformer 
(GPT) to autoregressively predict the discrete latent representations 
of layouts after training LayoutVQ-VAE. Furthermore, we pair eachh i 

�ℎlayout latent representation �� 
1 , . . . , �� with its corresponding 

constraints [�, �1, . . . , �� ] by projecting each vector to the same 
dimension and concatenating them into a sequence, so that the 
self-attention mechanism in the GPT can be used to learn the re-
lationship between the constraints and layouts. Three separator 
tokens, [bos] (beginning of the sequence), [sep] (separator between 
the conditional tokens and the discrete latent tokens), and [eos] (end 
of the sequence) are also added to each sequence. During training 
the GPT, we only optimize the predictions for the discrete layout 
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representation and ignore the corresponding outputs of the con-
straints. After training, we can employ the GPT to autoregressively 
sample the discrete latent representation of layout that matches the 
constraints, and then input the representation and constraints into 
the decoder to generate an appropriate layout. 

Implement details We implement our LayoutVQ-VAE with 
PyTorch [30]. For Transformer blocks in the encoder and decoder, 
we stack 12 layers with an input/output size of 512 and a feed-
forward representation size of 256, use 8 multi-attention heads and 
employ 3 layout heads to represent the layout. For Transformer 
blocks in the GPT for prior, we stack 4 layers with an input/output 
size of 1024 and a feed-forward representation size of 1024, and 
use 2 multi-attention heads. In the embedding space, we use K = 
512 and D = 20. We train the model using the Adam optimizer with 
a learning rate of 1e-5 on a GPU of NVIDIA GeForce RTX 3090 
Founders Edition. 

5 EXPERIMENTS 
In this section, we discuss the quantitative and qualitative perfor-
mance of the proposed model in extensive experiments. We frst 
describe the three public datasets and the evaluation metrics used 
in our experiments. Then for each experiment, we introduce its 
experimental setup and discuss the results. Note that in the genera-
tion and construction experiments, we don’t consider the efect of 
scenarios on layouts. The reason is that we hope for a fair compar-
ison with other methods. Besides, the public layout datasets lack 
labels for layout scenarios. While in the generation experiments of 
product card layout and magazine layout, we take the scenario as 
an external constraint. 

5.1 Dataset 
We evaluate our model on PDCard dataset and the following three 
publicly available datasets which are widely used in graphic layout 
generation tasks. 

Publaynet [42] This is a dataset for document layout analysis, 
which contains 360k+ document layouts with 5 element types. In 
our experiment, we exclude layouts with more than 9 elements and 
use 160k+ layouts of the ofcial training split for training, the rest 
8k+ layouts for validation, and the ofcial validation split (i.e., 4k+ 
layouts) for testing. 

Rico [5] This dataset provides UI layouts with 27 element types 
collected from Android apps. Since some element types in the 
dataset appear less frequently, which may afect the performance of 
the model on these elements, we follow [19, 25] and only preserve 
the 13 most frequent elements in the dataset. Similar to Publaynet, 
we also exclude layouts with more than 9 elements. Since there is 
no ofcial split, we use 17k+ layouts for training, 1k+ layouts for 
validation and 2k+ layouts for testing. 

Magazine [41] This dataset contains 3,919 magazine layouts 
covering 6 common categories, including fashion, food, news, sci-
ence, travel, and wedding. Each page is annotated with 6 diferent 
semantic elements. In our experiment, we exclude layouts with 
more than 10 elements and obtain 2.5k+ layouts for training, 100+ 
layouts for validation, and 300+ layouts for testing validation. We 
also input magazine categories as constraints into the model. 

5.2 Evaluation Metrics 
To measure the generation performance, we use four metrics repre-
senting diferent aspects of perceptual quality: Fréchet Inception 
Distance (FID), Maximum Intersection over Union (MaxIoU), Align-
ment, and Overlap. For the reconstruction experiments, we use 
FID, MaxIoU AND ����� to evaluate the similarity between the 
reconstructed layouts and real layouts. 

FID This metric describes the distribution diference between 
real and generated layouts. Following [19], we obtain the layout 
embedding by training a neural network to discriminate ground-
truth layouts from noise-added layouts on Publaynet and Rico, and 
calculate the distance between the features of real layouts and the 
generated layouts for FID. 

MaxIoU Maximum IoU is defned to calculate the similarity be-
tween two collections of generated layouts and real layouts. Follow-
ing [19], we frst calculate the similarity of two layouts � = {�� }� 

�=1� � and � ′ = � ′ 
�=1 under the optimal matching of elements as: 

� 

∑� � �� � 1 
���� �, � ′ ,� = max IoU �� , �� 

′
(� ) , (10)

� ∈�� � 
�=1 

where �� represents all possible matching methods of two sets 
of elements with length �, ��� (.) calculates the Intersection over 
Union of the two bounding boxes. Note that the matching element 
categories must be the same. Then we calculate the MaxIoU between� � the two layout collections B = {�� }�

� 
=1 and B′ = � ′ 

�=1 as:� 

∑� � �� � 1
Max IoU B, B′ , C = max ���� B, B′ , (11)

� ∈�� � � (�)
�=1 

where the matching layouts must have the same set of categories. 
W bbox Wasserstein distance also describe the distance between 

the real and learned data distributions. Unlike FID, which calculates 
the similarity at the feature level, we can use����� [2] to accurately 
evaluate the distance between bounding boxes of real and generated 
layout. 

Alignment and Overlap These two metrics are employed to 
measure the quality of layout in terms of aesthetics. Following 
[26],we measure six possible alignment types (i.e., Left, X-center, 
Right, Top, Y-center and Bottom aligned) among adjacent elements 
and take the smallest of them: 

� � �∑ 1 
Δ�� 

� ∀ � ≠� � ∈� 
�Alignment (�) = min � min � − Δ��� , (12) 

�=1 

where � (�) = − log(1 − �), � represents the set of six alignment 
types. For overlap, we calculate the average intersection area of 
any two elements in the layout: 

∑ ∑ 1 � 
�� ∩ � � 

�Overlap (�) = , (13)
2� �� �=1 ∀ �≠� 

where �� ∩ � � represents the intersection area of element i and j. 
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Table 1: Quantitative comparisons of element labels constrained layout generation. 

Rico Publaynet 
FID↓ MaxIoU↑ Alignment↓ Overlap↓ FID↓ MaxIoU↑ Alignment↓ Overlap↓ 

LayoutGAN++ 13.65±0.29 0.36±0.01 0.58±0.03 66.04±0.64 24.35±0.39 0.34±0.01 0.19±0.01 15.99±0.14 
Gupta et al. 10.35±0.01 0.36±0.01 0.36±0.01 64.32±0.01 20.61±0.01 0.33±0.01 0.13±0.01 10.65±0.01 

Ours 6.48±0.19 0.47±0.01 0.28±0.05 85.84±0.65 20.49±0.17 0.39±0.01 0.14±0.01 22.65±0.34 
Real data 4.47 0.65 0.26 50.58 9.54 0.53 0.04 0.22 

Figure 5: Qualitative comparisons of element labels constrained layout generation. 

5.3 Layout Generation with Internal 
Constraints 

Settings In this experiment, we use Gupta et al. [10] and 
LayoutGAN++ [19] as our baselines and evaluate the perfor-
mance of our model in layout generation constrained with el-
ement labels. Both of the baselines are implemented with Of-
cial codes. The model in Gupta et al. frst leverages self-attention 
mechanism to learn contextual relationships between layout el-
ements and achieves the state-of-the-art performance regard-
ing unconditional layout generation. It represents a layout ash 

� � 
< ��� >, �1, �� 

1 , �1 , �
ℎ 
1 , �1 

� , . . . , ��, ��
� , �� , ��

ℎ ,� 
��
� , < ��� > , starts with the <bos> token, predicts the category 

and geometric parameters of each element one by one, and ends 
when the <eos> token is predicted. In practice, to satisfy the re-
quirement of controllable element labels in the experiment, we 
adapted its code: ignore the element categories and <eos> token 
predicted by the model, and replace it with the given ones, so that 
the model only needs to predict the geometric parameters accord-
ing to the input constraints. LayoutGAN++ is a recent work for 
conditional layout generation which employs a GAN framework 

to generate layout and uses optimization algorithms to adjust the 
aesthetic quality of layout. To focus on the performance of the 
generative model, we omit its optimization algorithm in this exper-
iment. Qualitative and quantitative experimental results are based 
on the layouts generated by each trained model on the test-sets 
of Publaynet and Rico. Especially in quantitative experiments, we 
performed fve sampling generations for each sample in test-set 
to eliminate the bias caused by random sampling in the process of 
model generation, and calculated the mean and standard deviation 
of each metric. 

Results Table 1 shows the quantitative comparisons of genera-
tion performance. Following [19], the FID and MaxIoU of real data 
are computed between the validation and test data, and the Align-
ment and Overlap are computed with the test data for reference. 
On both Publaynet and Rico, our method achieves the best perfor-
mance in the evaluation of FID and MaxIoU, thanks to the discrete 
layout representation. This illustrates that the layout distribution 
learned by our model is the closest to the ground truth. In terms of 
aesthetics, our model achieves the best or comparable alignment 
score which benefts from the discrete representation of geometric 
parameters of elements. Compared with Rico dataset, the layouts 
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Table 2: Quantitative comparisons of layout construction. 

Rico Publaynet 
FID↓ MaxIoU↑ ����� ↓ FID↓ MaxIoU↑ ����� ↓ 

LayoutGAN++ 23.21 0.39 0.084 109.3 0.26 0.133 
Ours 6.23 0.55 0.053 17.79 0.49 0.044 

Figure 6: Qualitative comparisons of layout construction. 

generated by our model on Publaynet dataset has a larger gap with 
the performance of real layouts on several metrics, which is caused 
by the unique document layouts in Publaynet. In more detail, the 
layouts in this dataset are obtained from PDF articles that are rig-
orously typeset and publicly available on PubMed Central [42]. 
The elements in them must be strictly aligned, closely arranged 
but avoid overlapping, and elements with the same category may 
appear in diferent positions of the same layout (e.g., there are usu-
ally multiple closely arranged text elements in a document layout), 
which increases the difculty for the model to learn the relationship 
between elements. On the contrary, the categories of elements in 
UI layouts have certain functional semantics and their positions 
are relatively fxed (e.g., toolbar elements are usually at the top 
of layouts), which is easy to be modeled. Figure 5 provides the 
qualitative comparisons. It can be seen that our method produces 
the highest-quality layouts, especially with great alignment and 
rational arrangement of diferent types of elements. The results of 
LayoutGAN++ are close to ours, but some layouts have the problem 
of uneven size distribution and misalignment of elements. Due to 
the use of unidirectional Transformer, Gupta et al. can not obtain 
the type and number of elements that appear later [23] and fail to 
arrange all elements from a global perspective, so that produces 
poor results in conditional generation. On the contrary, our model 

generates only latent representation of layout with the unidirec-
tional Transformer, and then feeds the latent representation into a 
decoder whose backbone is a bidirectional transformer to predict 
all bounding boxes simultaneously, efectively addressing the above 
issues. 

5.4 Layout Reconstruction 
Settings To further illustrate the advantages of our proposed dis-
crete latent representation of layout, we evaluate the performance 
of our VQ-VAE model in layout reconstruction. In this experiment, 
we employ the neural network used for layout reconstruction in 
LayoutGAN++ as a baseline (i.e., the discriminator and auxiliary 
decoder in LayoutGAN++), which leverages the similar encoder 
and decoder as ours but represents layout with a continuous feature 
vector. In addition, in order to measure the similarity between the 
input real layout and the reconstructed layout, we only perform the 
optimal matching of the elements in Equation 10 when calculating 
MaxIoU. 

Results Table2 shows the quantitative comparisons. Our model 
achieves the better performances on all metrics, which indicates 
that the layout generated by our model is closer to the real layout 
in both feature distribution (illustrated by FID) and bounding box 
distribution (illustrated by MaxIoU and����� ). Figure6 shows the 
qualitative comparisons. It can be found that our model can not only 
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Figure 7: Results of our model on PDCard dataset. In each line, the real layout (Ground Truth) and its scenario are shown 
on the left, the layouts generated with the same element labels and 3 diferent scenarios by our model are shown on the left, 
where Scenario I represents Product Recommendation, Scenario II represents Product by Category and Scenario III represents 
Product Search. 

reconstruct the structure of the ground truth, but also accurately 
restore the position and size of elements in detail. LayoutGAN++ 
can roughly capture the layout structure, but is not precise enough 
while predicting the bounding boxes, and sufers from misalign-
ment and overlapping problems. In general, both qualitative and 
quantitative experimental results show that discrete latent vectors 
are better at reconstructing the global structure and local details of 
the layout, and are more conducive to representing layout features. 

5.5 Layout Generation with External 
Constraints 

Settings Since no other model can generate layouts based on sce-
narios, and the impact of scenarios on layouts is difcult to quantify, 
we qualitatively evaluate the performance of our model by com-
paring diferent generated results obtained from the same element 
labels but diferent scenario constraints on PDCard dataset. For 
the sake of uniform representation of layouts with diferent aspect 
ratios in PDCard, similar to [39], we use an element with "back-
ground" type to represent the original canvas of the layout, and 
defne a larger canvas that can accommodate all layouts as a coor-
dinate reference. Therefore, the model has to predict not only the 
geometric parameters of the elements in the layout, but also the 
width, height and position of the "background" element, where the 
width and height (i.e., the aspect ratio of product card layout) is 
also afected by the constraints of scenario. 

In addition, to demonstrate the generality of our scenario con-
strained generative model in other types of graphic layouts, we 
also performed an experiment similar to the above on the Magazine 
dataset. Especially, the concept of "magazine category" makes simi-
lar sense to magazine layout as the "scenario" to product card layout, 
so we can defne it as the external constraint and generate layouts 
with the same element labels but diferent magazine categories to 
evaluate the performance of our model. 

Results Figure 7 shows the generated results on PDCard. By 
comparing the layouts in the same row, it can be found that even 
with the same element labels, our model can generate distinctly 
styled layouts based on diferent shopping scenarios. For example, 
the image element occupies a larger area in the product recommen-
dation layout (Scenario I), while that in the product search layout 
(Scenario III) is smaller, which is similar to the distribution of image 
proportions in the real data (see in Figure 2(a)). Besides, the size and 
aspect ratio of the generated layout also changes with the scenario. 
The layouts for product recommendation and product by category 
are both a vertical layouts, but those for product search are horizon-
tal layouts. The size of layouts for the three scenarios is gradually 
increasing. These results are all consistent with the explicit rules 
proposed in our design space and prove that our model can capture 
the relationship between layouts and scenarios. 

In Figure 8, the resulting layout also has a rich variety of mag-
azine categories. For instance, the layouts for science and news 
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Figure 8: Results of our model on Magazine dataset. In each line, the real layout (Ground Truth) and its magazine category are 
shown on the left, the layouts generated with the same element labels and 6 diferent categories by our model are shown on the 
left. The rendering images of the layouts are also shown in the fgure. 

magazines are usually structured and aligned, but the ones for oth-
ers are more casual and varied, especially for fashion. These results 
accord to our common sense that science and news magazines 
are more serious and require rigorous layout, while fashion and 
food magazines are prepared for entertainment and leisure and 
require more innovative and unconventional layout. Therefore, we 
can say that our model is capable in the generation with external 
constraints for other layout types. 

6 CASE STUDY 
In this section, we conducted two case studies. Study I was utilized 
to evaluate the applicability of product card layouts generated by 
our model, and Study II was used to evaluate whether our proposed 
approach, including the design space and generative model, could 
improve the efciency of PLP layout design while ensuring the 
applicability and diversity of the layout in specifc scenarios. 

6.1 Study I: Evaluating Layout Applicability 
Method To evaluate the applicability of the generated layout, Study 
I asks people to choose the most suitable one among two generated 
layouts with and without scenario constraints. Based on the PDCard 
test-set, we used LayoutVQ-VAE to generate 257 groups of layouts, 
each of which has two layouts with the same element labels, but 
one with the scenario constraints, denoted scenario-based layout, 

and one without, denoted common layout. After generation, we 
randomly selected 12 groups of layouts (4 groups per scenario) from 
the results as stimulus in the study, and invited a designer to render 
the layouts as realistic product cards for reference. The participants 
are 60 college students who were publicly recruited from a social 
networking site. We paid each participant $10 per hour, and the 
average time to complete the study was about 9 minutes. 

The study was conducted through an online questionnaire. We 
frst introduced three online shopping scenarios described in our 
design space to the participants, and presented two examples of real 
page screenshots from TaoBao for each scenario. To test whether 
the participants obtained the above information accurately, they 
were asked to answer several questions related to the above content. 
After completing the preliminary test, we presented each partici-
pant with 6 groups of layouts randomly selected from the above 12 
groups. The orders of the groups and the two layouts in each group 
are completely shufed to avoid bring bias. For each group, partici-
pants were asked to choose the layout with higher aesthetic quality, 
better presentation of the two main information types (visual and 
textual information), and better applicability. To improve the granu-
larity of samples, the frst three indicators about quality, visual and 
textual performance are measured with a 5-point Likert scale (i.e., 
1: layout I performs much better, 2: layout I performs slightly better, 
3: equal performance, 4: layout II performs slightly better, 5: layout 
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Table 3: The results of Study I showing average ratings of the participants in the aspect of aesthetic quality, image presentation 
and text presentation. 

Scenario Aesthetic Quality Image Presentation Text Presentation 
Product Recommendation 4.09±1.28 4.13±1.26 3.75±1.47 
Product by Category 4.13±1.39 3.98±1.36 3.91±1.46 
Product Search 3.49±1.55 3.28±1.43 3.44±1.55 

Figure 9: Examples for a group of layouts and related problem 
settings in Study I. 

Figure 10: The results of Study I showing the favorability 
ratings of the product card layouts with scenario constraints 
generated by LayoutVQ-VAE. 

II performs much better), while the fnal question on applicability 
takes a dichotomous format to allow participants to make a clear 
choice. Figure 9 shows a group of layouts and problem settings in 
the questionnaire as an example. Afterward, We frst fltrated the 
questionnaires according to the results of the preliminary test and 
obtained 51 valid questionnaires, then revised the order of layouts 
and the value of answers in the groups which are disrupted, in 
detail, all common layouts were recorded as layout I, corresponding 
to rating 1 in the 5-point answer, and all scenario-based layouts 
were recorded as layout II, corresponding to rating 5. Finally, we 
processed the fltered and revised results. 

Results Table 3 shows the evaluation results of the aesthetic 
quality, image presentation, and text presentation of the two kinds 
of layouts in the three scenarios. In theory, the model without sce-
nario constraints learns the distribution of all layouts in the dataset 
and generates layouts with no regard to each scenario, while the 
model with scenario constraints can classify layouts according to 

the input scenario labels, and model the layout distribution cor-
responding to each scenario. Thus, we can regard the common 
layout as the baseline and vertically compare the metric results of 
scenario-based layout. The value of 3 means that the two kinds 
of layouts has the same performance, and the value closer to 5, 
the scenario-based layout performs better. It can be found that the 
scenario-based layout is superior to the common layout on all in-
dicators for each scenario. Besides, the image presentation of the 
scenario-based layouts in the three scenarios is gradually declining, 
inversely the text presentation of product by category is better than 
that of product recommendation. However, the text presentation 
of product search is abnormal, even the results of each indicator 
in the search scenario are only slightly greater than 3. The main 
reason is that product card layouts usually consist of one image, 
one title and several attribute elements, and the scenario of layouts 
with a large number of attribute elements in the dataset are mostly 
labelled product search, as shown in Figure 2(d). Therefore, even 
if the scenario constraints are not input into the model, it can still 
learn the layout features corresponding to the search scenario based 
only on the input element labels. 

Figure 10 presents the support rate of the scenario-based layout 
in the current scenario (results of the last question), from which it 
can be seen that scenario-based layout is far favorable than common 
layout in the frst two scenarios. Although the value in product 
search is slightly lower, it is also greater than 60%. Overall, results 
of the study show that comparing with the common layout, the 
scenario-based layout achieves higher aesthetic quality, the change 
trend of its visualization and text information performance in the 
three scenarios is consistent with the real data, and it is more 
suitable for the target application. 

6.2 Study II: Applying Design Space and 
LayoutVQ-VAE to PLP Design 

Method The purpose of this study is to verify whether our ap-
proach, including the design space and generative model, could 
improve the efciency of creating high-quality scenario-based PLPs 
layouts. To this end, three groups of participants were invited to 
conduct a PLP design challenge, and sixty participants were invited 
for the evaluation. 

Each group in the PLP design challenge has three designers with 
at least two years of design experience, and each designer was asked 
to design a PLP for the three shopping scenarios respectively. The 
design process was observed and timed by the coordinator. One 
group (the Designer group) was asked to use general graphic design 
tools (e.g., Skecth) to create PLPs, another group (the Template 
group) was required to use 30 product card templates which are 
commonly used and provided by an online shopping platform, and 
the last group (the Intelligent Generation group) was introduced 
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Figure 11: Examples for the scenario-based PLPs designed by Designer Group, Template Group and Intelligent Generation 
Group in Study II. 

to use our approach, including the design space and generative segment the entire page and create the mall layout of it according 
model, LayoutVQ-VAE. We provided the three groups with the same to the hints of the design space, and then select the UI elements to be 
materials (i.e., UI elements in SVG format) and introductions to the displayed for each product card, including product’s image, title, and 
three shopping scenarios. For the Intelligent Generation group, we attribute elements. After this, they can input the target scenario and 
also introduced the workfow of PLPs design using our approach element labels into our model LayoutVQ-VAE, which will generate 
as the following: Given a shopping scenario, the designers can ten layouts to choose at a time. Finally, the designers can insert the 
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Figure 12: The results of Study II. (a) Average time to create a mall layout and a product card layout; (b) Average matching 
accuracy between the target scenario of the PLPs and the scenario judged by the participants; (c) Ratings on aesthetic quality of 
the PLPs by participants; (d) Ratings on diversity of the PLPs by participants. Scenario I represents Product Recommendation, 
Scenario II represents Product by Category, and Scenario III represents Product Search. 

selected product card layouts into the mall layout and complete 
the PLP design. To test whether these three groups can produce 
suitable layout according to given constraints, participants were 
required to select the UI elements to be displayed before designing 
the layout. Specifcally, the Template group needed to select the 
template best ftting the element labels and scenario, the Intelligent 
Generation group needed to choose from the layouts generated by 
the model, and both of them were not allowed to optimize the size 
and position of an element other than its aspect ratio. In the end, 
twenty-seven PLPs were produced by nine designers from the three 
groups (some of them are shown in Figure 11). 

In the evaluation, we recruited sixty college students on a social 
networking site and conducted the study through an online ques-
tionnaire. Each participant received a scenario introduction and a 
pre-test at the beginning of the questionnaire. In the formal test, 

we randomly selected 9 of the above 27 PLPs and showed them to 
the participants one by one. For each PLP, the participants were 
asked to choose in which shopping scenario the PLP layout would 
satisfy their needs, and rate the aesthetic quality and the diversity 
of product card layouts using a fve-point Likert scale (1: very poor, 
2: poor, 3: medium performance, 4: good, 5: very good). Each partic-
ipant was paid $10 per hour, and the average time to complete the 
questionnaire was about 8 minutes. After fltering results based on 
the pre-test, 57 valid questionnaires are fnally processed. 

Results Figure 12(a) shows the average time spent by the three 
groups of designers on designing one mall layout and one prod-
uct card layout for each scenario. It can be seen that both our 
proposed approach and template-based approach can signifcantly 
reduce the working time of designers. Especially in the stage of 
creating product card layouts, the Intelligent Generation group 
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spent 84.47% (Scenario I, ���� = 10.840, ��� = 1.432, ����� = 
1.683, ���� = 0.062), 53.28% (Scenario II, ���� = 4.167, ��� = 
0.261, ����� = 1.947, ���� = 0.144), and 75.27% (Scenario III, 
���� = 6.003, ��� = 1.304, ����� = 1.487, ���� = 0.325) less 
time respectively on designing a layout for the three scenarios than 
the Designer group. In this stage, thanks to the guidance of the 
design space and the capability of LayoutVQ-VAE to quickly gen-
erate scenario-based layouts (0.138s per layout on average), the 
designers can create a product card layout within two minutes on 
average, including UI element selection, layout generation, element 
aspect ratio optimization and layout export. In the stage of cre-
ating mall layout, the working time was also reduced compared 
with the other two groups, which benefts from the mall layout pat-
tern recommended by the design space. Another fnding observed 
from the fgure is that the time spent by the Designer group on 
designing product card layouts for the three scenarios is gradually 
decreasing, while the time taken by the other two groups using 
automatic generation tools is relatively consistent. This is caused 
by the creation order and habits of participants. According to our 
observation, the participants in the Designer group usually start 
from Product Recommendation, and for the frst PLP, they need to 
create the entire layout from a blank design draft, which will take 
up much more time. But in the following design for other scenarios, 
participants usually copy the previous design draft and adjust the 
layout according to the scenario constraints and UI elements, so 
that they can improve the work efciency. 

Figure 12(b) shows the matching accuracy between the target 
scenario of PLP and the scenario judged by the participants. The 
higher matching accuracy means the PLPs meet the requirements 
of consumers in the target shopping scenarios better. The fgure 
demonstrates that the Intelligent Generation group can obtain the 
results comparable with the Designer group, but there is a certain 
gap between the performance of the Template group and the other 
two. This is caused by the limited variation and pre-designed nature 
of the template set. It is difcult for designers to choose a layout that 
perfectly fts the scenario requirements and element labels in the 
limited set of templates, so a relatively low matching accuracy rate 
is obtained. This shortcoming also leads to another problem shown 
in Figure 12(d): the lack of variation between individual product 
cards in the PLPs created by the Template group. Diferent from the 
Template group, LayoutVQ-VAE used by the Intelligent Generation 
group modeled the relationship between constraints and layout 
data through training, which is benefcial for it to generate a layout 
that matches the constraints input by designers. Moreover, since 
the layout generated by the model is obtained by decoding the 
sampled layout latent variables, there is a certain randomness in 
the sampling process, so various layouts can be generated through 
multiple sampling. This explains why the PLPs produced by the 
Intelligent Generation group achieved higher scores in the diversity 
evaluation, which was similar to that of the Designer group. In the 
aesthetic quality evaluation shown in Figure 12(c), the Intelligent 
Generation group and the Template group perform almost equally, 
while the Designer group obtains higher scores. In general, using 
our approach to create PLPs can not only reduce the working time 
signifcantly, but also ensure the quality of PLPs in terms of scenario 
constraint satisfaction, aesthetics, and diversity. 

7 CONCLUSION 
In this paper, we propose a design space and a conditional genera-
tive model, LayoutVQ-VAE, to improve the performance of large-
scale high-quality PLP layout creation within various scenarios for 
online shopping platforms. In the design space, we classify common 
shopping scenarios into three categories: product recommendation, 
product by category and product search. For each scenario, we 
analyze it in terms of consumer characteristics, displayed product 
information, and layout patterns. Especially for the layout patterns, 
we conclude some explicit rules by summarizing the experience 
of senior designers and analyzing real data. In LayoutVQ-VAE, the 
discrete latent representation of layout is learnt by training a novel 
VQ-VAE and we model the relationship between the discrete rep-
resentation and constraints through a unidirectional Transformer. 
The above innovations enable our model to obtain comparable or 
better results than state-of-the-art methods in layout generation 
tasks as well as in layout reconstruction tasks. Extensive experi-
ments on multiple datasets with diferent layout types also illustrate 
the generality of our model in graphic layout design constrained 
with scenarios. Through two case studies, we also prove that our 
design space can assist designers to make reasonable decisions 
about mall layout design and UI elements selection, and our gen-
erative model can synthesize multiple appropriate product card 
layouts within seconds, which are both benefcial to quickly cre-
ate a large number of high-quality and diverse PLPs satisfying the 
requirements of shopping scenarios. In the future, we plan to fur-
ther expand our research, such as exploring the impact of product 
type and consumer characteristics on layout, and develop an intelli-
gent PLP design system based on our generative model to produce 
large-scale personalized and scenario-based PLPs for diferent tar-
get consumers in real time, which is the ultimate goal of intelligent 
UI for mobile shopping platforms. 
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